logo

The Laplace Transform of the n-th Order Derivative 📂Odinary Differential Equations

The Laplace Transform of the n-th Order Derivative

Theorem1

Assuming the following two conditions:

  1. For any interval 0tA0 \le t \le A, let functions ff, ff^{\prime}, \cdots, f(n1)f^{(n-1)} be continuous and let the n-th derivative f(n)(t)f^{(n)}(t) be piecewise continuous.
  2. When tMt \ge M, there exist real numbers aa and positives KK, MM satisfying f(t)Keat|f(t)| \le Ke^{at}, f(t)Keat|f^{\prime}(t)| \le Ke^{at}, \cdots, and f(n1)(t)Keat|f^{(n-1)}(t)| \le Ke^{at}.

Then, the Laplace transform of the n-th derivative of ff, L{f(n)(t)}\mathcal{L} \left\{ f^{(n)}(t) \right\}, exists when s>as>a and its value is as follows.

L{f(n)(t)}=snL{f(t)}sn1f(0)sn2f(0)sf(n2)(0)f(n1)(0) \mathcal {L} \left\{ f^{(n)}(t) \right\} = s^n\mathcal {L} \left\{ f(t) \right\} -s^{n-1}f(0)- s^{n-2}f^{\prime}(0) -\cdots -sf^{(n-2)}(0)-f^{(n-1)}(0)

Explanation

The result can be easily deduced by repeatedly applying the result for the first derivative.

Proof

  • Second derivative

    L{f(t)}=sL{f(t)}f(0)=s(sL{f(t)}f(0))f(0)=s2L{f(t)}sf(0)f(0) \begin{align*} \mathcal{L} \left\{ f^{\prime \prime}(t) \right\} &= s\mathcal{L} \left\{ f^{\prime}(t) \right\} -f^{\prime}(0) \\ &= s\Big( s\mathcal{L} \left\{ f(t) \right\} -f(0) \Big) -f^{\prime}(0) \\ &= s^2\mathcal{L} \left\{ f(t) \right\} -sf(0) -f^{\prime}(0) \end{align*}

  • Third derivative L{f(3)(t)}=sL{f(t)}f(0)=s(s2L{f(t)}sf(0)f(0))f(0)=s3L{f(t)}s2f(0)sf(0)f(0) \begin{align*} \mathcal{L} \left\{ f^{(3)}(t) \right\} &= s\mathcal{L} \left\{ f^{\prime \prime}(t) \right\} -f^{\prime \prime}(0) \\ &= s\Big( s^2\mathcal{L} \left\{ f(t) \right\} -sf(0) -f^{\prime}(0) \Big) -f^{\prime \prime}(0) \\ &= s^3\mathcal{L} \left\{ f(t) \right\} -s^2f(0) -sf^{\prime}(0) -f^{\prime \prime}(0) \end{align*}

Thus, by repeating the above process, the Laplace transform of the n-th derivative can be found as follows.

L{f(n)(t)}=snL{f(t)}sn1f(0)sn2f(0)sf(n2)(0)f(n1)(0) \mathcal {L} \left\{ f^{(n)}(t) \right\} = s^n\mathcal {L} \left\{ f(t) \right\} -s^{n-1}f(0)- s^{n-2}f^{\prime}(0) -\cdots -sf^{(n-2)}(0)-f^{(n-1)}(0)

See also


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p249 ↩︎