logo

Solution to the Initial Value Problem for the Wave Equation with Dirichlet Boundary Conditions 📂Partial Differential Equations

Solution to the Initial Value Problem for the Wave Equation with Dirichlet Boundary Conditions

Explanation

{utt=c2uxxu(0,x)=f(x)ut(0,x)=g(x) \begin{cases} u_{tt} = c^2 u_{xx} \\ u(0,x) = f(x) \\ u_{t}(0,x) = g(x) \\ \end{cases}

The equation above is in a 11-dimensional space with a length of ll, under the Dirichlet boundary condition from the wave equation.

{u(t,0)=α(t)u(t,l)=β(t) \begin{cases} u(t,0) = \alpha (t) \\ u(t,l) = \beta (t) \end{cases}

It’s given when α=β=0\alpha = \beta = 0 and there’s an initial condition regarding the waveform. Among these types of problems, it’s the simplest and easiest form. Here, tt represents time, xx represents position, and u(t,x)u(t,x) represents the waveform at position xx when the time is tt. ff and gg are initial conditions, especially ff represents the waveform when it’s t=0t=0.

When boundary conditions are given, d’Alembert’s formula becomes unusable, similar ideas as when solving the heat equation are applied.

Solution

  • Step 1.

    Suppose the solution is represented as u(t,x)=w(t)v(X)u(t,x) = w(t) v(X), to solve the wave equation, organizing w’’(t)v(x)=c2w(t)v(x)w’’(t) v(x) = c^2 w(t) v ''(x) neatly results in:

    w’’(t)w(t)v(x)=c2v(x)v(x)=λ {{w’’(t)} \over {w(t) } } v(x) = c^2 {{v ''(x)} \over {v(x)}} = \lambda

    Where

    xλ=x(w’’(t)w(t))=0 {{\partial } \over { \partial x }} \lambda = {{\partial } \over { \partial x }} \left( {{w’’(t)} \over {w(t) } } \right) = 0

    And

    tλ=x(c2v(x)v(x))=0 {{\partial } \over { \partial t }} \lambda = {{\partial } \over { \partial x }} \left( c^2 {{v ''(x)} \over {v(x) } } \right) = 0

    Therefore, λ\lambda is a constant.

  • Step 2.

    Since λ\lambda being a constant is assured, solving the second-order differential equations w’’λw=0w’’ - \lambda w = 0 and vλc2v=0\displaystyle v '' - {{\lambda} \over {c^2}} v = 0 individually should do. The solutions will be non-trivial when λ<0\lambda <0 because the sign in front of λ\lambda is different compared to when solving the heat equation.

    20180609\_223725.png

    The solution for ω:=nπcl\displaystyle \omega := {{ n \pi c} \over {l}} is represented as above. Especially, the fundamental solutions for solving the equations are un(t,x)=cosnπctlsinnπxl\displaystyle u_{n}(t,x) = \cos {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} and u~n(t,x)=sinnπctlsinnπxl\displaystyle \tilde{u} _{n}(t,x) = \sin {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}}. Therefore, the solution for a certain bn,dnb_{n}, d_{n}

    u(t,x)=n=1[bncosnπctlsinnπxl+dnsinnπctlsinnπxl] u(t,x) = \sum_{n = 1}^{\infty} \left[ b_{n } \cos {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} + d_{n} \sin {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} \right]

    is represented as above.

  • Step 3. Fourier Expansion for Initial Conditions

    u(0,x)=n=1[bnsinnπxl]=f(x) u(0,x) = \sum_{n=1}^{\infty} \left[ b_{n } \sin {{ n \pi x} \over {l}} \right] = f(x)

    Thus,

    bn=<f(x),sinnπxl>=2l0lf(x)sinnπxldx b_{n} = \left< f(x) , \sin {{n \pi x } \over {l}} \right> = {{2} \over {l}} \int_{0}^{l} f(x) \sin {{n \pi x} \over {l}} dx

    And,

    ut(0,x)=n=1[dnnπclsinnπxl]=g(x) u_{t}(0,x) = \sum_{n=1}^{\infty} \left[ d_{n } {{n \pi c} \over {l}} \sin {{ n \pi x} \over {l}} \right] = g(x)

    Therefore,

    dn=lnπc<g(x),sinnπxl>=2nπc0lg(x)sinnπxldx d_{n} = {{l} \over {n \pi c}} \left< g(x) , \sin {{n \pi x } \over {l}} \right> = {{2} \over { n \pi c }} \int_{0}^{l} g(x) \sin {{n \pi x} \over {l}} dx

    It turns out like this.

    u(t,x)=n=1[2l0lf(x)sinnπxldxcosnπctlsinnπxl+2nπc0lg(x)sinnπxldxsinnπctlsinnπxl] u(t,x) = \sum_{n=1}^{\infty} \left[ {{2} \over {l}} \int_{0}^{l} f(x) \sin {{n \pi x} \over {l}} dx \cos {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} + {{2} \over { n \pi c }} \int_{0}^{l} g(x) \sin {{n \pi x} \over {l}} dx \sin {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} \right]