Solution to the Initial Value Problem for the Wave Equation with Dirichlet Boundary Conditions
📂Partial Differential Equations Solution to the Initial Value Problem for the Wave Equation with Dirichlet Boundary Conditions Explanation { u t t = c 2 u x x u ( 0 , x ) = f ( x ) u t ( 0 , x ) = g ( x )
\begin{cases} u_{tt} = c^2 u_{xx}
\\ u(0,x) = f(x)
\\ u_{t}(0,x) = g(x)
\\ \end{cases}
⎩ ⎨ ⎧ u tt = c 2 u xx u ( 0 , x ) = f ( x ) u t ( 0 , x ) = g ( x )
The equation above is in a 1 1 1 -dimensional space with a length of l l l , under the Dirichlet boundary condition from the wave equation .
{ u ( t , 0 ) = α ( t ) u ( t , l ) = β ( t )
\begin{cases} u(t,0) = \alpha (t)
\\ u(t,l) = \beta (t) \end{cases}
{ u ( t , 0 ) = α ( t ) u ( t , l ) = β ( t )
It’s given when α = β = 0 \alpha = \beta = 0 α = β = 0 and there’s an initial condition regarding the waveform. Among these types of problems, it’s the simplest and easiest form. Here, t t t represents time, x x x represents position, and u ( t , x ) u(t,x) u ( t , x ) represents the waveform at position x x x when the time is t t t . f f f and g g g are initial conditions, especially f f f represents the waveform when it’s t = 0 t=0 t = 0 .
When boundary conditions are given, d’Alembert’s formula becomes unusable, similar ideas as when solving the heat equation are applied.
Solution Step 1.
Suppose the solution is represented as u ( t , x ) = w ( t ) v ( X ) u(t,x) = w(t) v(X) u ( t , x ) = w ( t ) v ( X ) , to solve the wave equation, organizing w ’’ ( t ) v ( x ) = c 2 w ( t ) v ′ ′ ( x ) w’’(t) v(x) = c^2 w(t) v ''(x) w ’’ ( t ) v ( x ) = c 2 w ( t ) v ′′ ( x ) neatly results in:
w ’’ ( t ) w ( t ) v ( x ) = c 2 v ′ ′ ( x ) v ( x ) = λ
{{w’’(t)} \over {w(t) } } v(x) = c^2 {{v ''(x)} \over {v(x)}} = \lambda
w ( t ) w ’’ ( t ) v ( x ) = c 2 v ( x ) v ′′ ( x ) = λ
Where
∂ ∂ x λ = ∂ ∂ x ( w ’’ ( t ) w ( t ) ) = 0
{{\partial } \over { \partial x }} \lambda = {{\partial } \over { \partial x }} \left( {{w’’(t)} \over {w(t) } } \right) = 0
∂ x ∂ λ = ∂ x ∂ ( w ( t ) w ’’ ( t ) ) = 0
And
∂ ∂ t λ = ∂ ∂ x ( c 2 v ′ ′ ( x ) v ( x ) ) = 0
{{\partial } \over { \partial t }} \lambda = {{\partial } \over { \partial x }} \left( c^2 {{v ''(x)} \over {v(x) } } \right) = 0
∂ t ∂ λ = ∂ x ∂ ( c 2 v ( x ) v ′′ ( x ) ) = 0
Therefore, λ \lambda λ is a constant.
Step 2.
Since λ \lambda λ being a constant is assured, solving the second-order differential equations w ’’ − λ w = 0 w’’ - \lambda w = 0 w ’’ − λ w = 0 and v ′ ′ − λ c 2 v = 0 \displaystyle v '' - {{\lambda} \over {c^2}} v = 0 v ′′ − c 2 λ v = 0 individually should do. The solutions will be non-trivial when λ < 0 \lambda <0 λ < 0 because the sign in front of λ \lambda λ is different compared to when solving the heat equation.
The solution for ω : = n π c l \displaystyle \omega := {{ n \pi c} \over {l}} ω := l nπ c is represented as above. Especially, the fundamental solutions for solving the equations are u n ( t , x ) = cos n π c t l sin n π x l \displaystyle u_{n}(t,x) = \cos {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} u n ( t , x ) = cos l nπ c t sin l nπ x and u ~ n ( t , x ) = sin n π c t l sin n π x l \displaystyle \tilde{u} _{n}(t,x) = \sin {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} u ~ n ( t , x ) = sin l nπ c t sin l nπ x . Therefore, the solution for a certain b n , d n b_{n}, d_{n} b n , d n
u ( t , x ) = ∑ n = 1 ∞ [ b n cos n π c t l sin n π x l + d n sin n π c t l sin n π x l ]
u(t,x) = \sum_{n = 1}^{\infty} \left[ b_{n } \cos {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} + d_{n} \sin {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} \right]
u ( t , x ) = n = 1 ∑ ∞ [ b n cos l nπ c t sin l nπ x + d n sin l nπ c t sin l nπ x ]
is represented as above.
Step 3. Fourier Expansion for Initial Conditions
u ( 0 , x ) = ∑ n = 1 ∞ [ b n sin n π x l ] = f ( x )
u(0,x) = \sum_{n=1}^{\infty} \left[ b_{n } \sin {{ n \pi x} \over {l}} \right] = f(x)
u ( 0 , x ) = n = 1 ∑ ∞ [ b n sin l nπ x ] = f ( x )
Thus,
b n = < f ( x ) , sin n π x l > = 2 l ∫ 0 l f ( x ) sin n π x l d x
b_{n} = \left< f(x) , \sin {{n \pi x } \over {l}} \right> = {{2} \over {l}} \int_{0}^{l} f(x) \sin {{n \pi x} \over {l}} dx
b n = ⟨ f ( x ) , sin l nπ x ⟩ = l 2 ∫ 0 l f ( x ) sin l nπ x d x
And,
u t ( 0 , x ) = ∑ n = 1 ∞ [ d n n π c l sin n π x l ] = g ( x )
u_{t}(0,x) = \sum_{n=1}^{\infty} \left[ d_{n } {{n \pi c} \over {l}} \sin {{ n \pi x} \over {l}} \right] = g(x)
u t ( 0 , x ) = n = 1 ∑ ∞ [ d n l nπ c sin l nπ x ] = g ( x )
Therefore,
d n = l n π c < g ( x ) , sin n π x l > = 2 n π c ∫ 0 l g ( x ) sin n π x l d x
d_{n} = {{l} \over {n \pi c}} \left< g(x) , \sin {{n \pi x } \over {l}} \right> = {{2} \over { n \pi c }} \int_{0}^{l} g(x) \sin {{n \pi x} \over {l}} dx
d n = nπ c l ⟨ g ( x ) , sin l nπ x ⟩ = nπ c 2 ∫ 0 l g ( x ) sin l nπ x d x
It turns out like this.
u ( t , x ) = ∑ n = 1 ∞ [ 2 l ∫ 0 l f ( x ) sin n π x l d x cos n π c t l sin n π x l + 2 n π c ∫ 0 l g ( x ) sin n π x l d x sin n π c t l sin n π x l ]
u(t,x) = \sum_{n=1}^{\infty} \left[ {{2} \over {l}} \int_{0}^{l} f(x) \sin {{n \pi x} \over {l}} dx \cos {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} + {{2} \over { n \pi c }} \int_{0}^{l} g(x) \sin {{n \pi x} \over {l}} dx \sin {{n \pi c t} \over {l}} \sin {{ n \pi x} \over {l}} \right]
u ( t , x ) = n = 1 ∑ ∞ [ l 2 ∫ 0 l f ( x ) sin l nπ x d x cos l nπ c t sin l nπ x + nπ c 2 ∫ 0 l g ( x ) sin l nπ x d x sin l nπ c t sin l nπ x ]
■