Mean and Variance of the Bernoulli Distribution
📂Probability DistributionMean and Variance of the Bernoulli Distribution
X∼U[a,b] Surface
E(X)=2a+bVar(X)=12(b−a)2
Derivation
Strategy: Directly deduce from the definition of the uniform distribution.
Definition of Uniform Distribution: For [a,b]⊂R, a continuous probability distribution with the following probability density function]] U[a,b] is called a uniform distribution.
f(x)=b−a1,x∈[a,b]
Mean
E(X)=====∫abxb−a1dxb−a1[2x2]abb−a12b2−a2b−a12(b−a)(b+a)2a+b
■
Variance
E(X2)=====∫abx2b−a1dxb−a1[3x3]abb−a13b3−a3b−a13(b−a)(b2+ab+a2)3b2+ab+a2
Therefore
Var(X)====3b2+ab+a2−(2a+b)2124b2+4ab+4a2−3a2−6ab−3b212a2−2ab+b212(b−a)2
■