logo

Moment Generating Function of Bernoulli Distribution 📂Probability Distribution

Moment Generating Function of Bernoulli Distribution

Formula

XX \sim When Bin(1,p)\operatorname{Bin}(1, p), the moment generating function of XX is given below.

m(t)=1p+pet=q+pet,q=1p m(t) = 1 - p + pe^{t} = q + pe^{t}, \qquad q = 1 - p

Proof

For p[0,1]p \in [0, 1], a discrete probability distribution with the following probability mass function is referred to as a Bernoulli distribution.

f(x)=px(1p)1x,x=0,1 f(x) = p^{x}(1-p)^{1-x}, \qquad x = 0, 1

From the Definition of Moment Generating Function

By the definition of the moment generating function,

E(etX)=x=0,1etxf(x)=x=0,1etx(1p)1xpx=(1p)et0p0+pet1(1p)11=1p+pet \begin{align*} E(e^{tX}) &= \sum\limits_{x = 0, 1} e^{tx} f(x) \\ &= \sum\limits_{x = 0, 1} e^{tx} (1 - p)^{1-x} p^{x} \\ &= (1 - p) e^{t \cdot 0} p^{0} + p e^{t \cdot 1} (1 - p)^{1-1} \\ &= 1 - p + pe^{t} \end{align*}

From the Binomial Distribution

The Bernoulli distribution is a special case of the binomial distribution Bin(n,p)\operatorname{Bin}(n, p) where n=1n = 1. The moment generating function of the binomial distribution is as follows.

m(t)=[1p+pet]n m(t)= [1 - p + pe^{t}]^{n}

Therefore, the moment generating function of the Bernoulli distribution is as follows.

m(t)=1p+pet=q+pet m(t) = 1 - p + pe^{t} = q + pe^{t}