logo

The Relationship between Covariant Derivative and Riemann Curvature Tensor 📂Geometry

The Relationship between Covariant Derivative and Riemann Curvature Tensor

Theorem1

Let $f : A \subset \mathbb{R}^{2} \to M$ be a parametrized surface. Let $(s, t)$ be the standard coordinates of $\mathbb{R}^{2}$. Let $V = V(s,t)$ be a vector field following $f$. At each point $(s, t)$, the following holds:

$$ \dfrac{D }{\partial t} \dfrac{D }{\partial s}V - \dfrac{D }{\partial s} \dfrac{D }{\partial t}V = R(\dfrac{\partial f}{\partial s}, \dfrac{\partial f}{\partial t})V $$

Description

Proof

Choose a coordinate system $(U, \mathbf{x})$ at point $p$ on the manifold $M$ of differentiable manifolds. Let $\left\{ X_{i} = \dfrac{\partial }{\partial x_{i}} \right\}$ be the basis of the tangent space $T_{p}M$. And let’s say $V = \sum_{i}v^{i}X_{i}, v^{i} = v^{i}(s, t)$. Then, by the properties of the covariant derivative,

$$ \dfrac{D }{\partial s}V = \dfrac{D }{\partial s}(\sum_{i} v^{i}X_{i}) = \sum_{i}v^{i}\dfrac{D }{\partial s}X_{i} + \sum_{i} \dfrac{\partial v^{i}}{\partial s}X_{i} $$

Applying $\dfrac{D }{\partial t}$ again to this gives the following.

$$ \begin{align*} \dfrac{D }{\partial t}\left( \dfrac{D }{\partial s}V \right) &= \dfrac{D }{\partial t}\left( \sum_{i}v^{i}\dfrac{D }{\partial s}X_{i} + \sum_{i} \dfrac{\partial v^{i}}{\partial s}X_{i} \right) \\ &= \sum_{i}v^{i}\dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} + \sum_{i}\dfrac{\partial v^{i}}{\partial t}\dfrac{D }{\partial s}X_{i} + \sum_{i} \dfrac{\partial v^{i}}{\partial s}\dfrac{D }{\partial t}X_{i} + \sum_{i} \dfrac{\partial^{2} v^{i}}{\partial t\partial s}X_{i} \end{align*} $$

Calculating $\dfrac{D }{\partial s}\left( \dfrac{D }{\partial t}V \right)$ in the same way and subtracting one from the other, it can be seen that the last three terms in the above equation cancel out each other. Therefore,

$$ \begin{equation} \begin{aligned} \dfrac{D }{\partial t} \dfrac{D }{\partial s}V - \dfrac{D }{\partial s} \dfrac{D }{\partial t}V &= \sum_{i}\left( v^{i}\dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - v^{i}\dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} \right) \\ &= \sum_{i}v^{i}\left( \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - \dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} \right) \end{aligned} \label{1} \end{equation} $$

Now, let’s say $p = f(s,t) = \mathbf{x}(x_{1}(s,t), \dots, x_{n}(s,t))$. Calculating $\dfrac{\partial f}{\partial s}$,

$$ \begin{align*} \dfrac{\partial f}{\partial s} &:= df(\dfrac{\partial }{\partial s}) \\ &= \begin{bmatrix} \dfrac{\partial x_{1}}{\partial s} & \dfrac{\partial x_{1}}{\partial t} \\ \vdots & \vdots \\ \dfrac{\partial x_{n}}{\partial s} & \dfrac{\partial x_{n}}{\partial t}\end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \dfrac{\partial x_{1}}{\partial s} \\ \vdots \\ \dfrac{\partial x_{n}}{\partial s} \end{bmatrix} = \dfrac{\partial x_{j}}{\partial s}X_{j} \end{align*} $$

Similarly, $\dfrac{\partial f}{\partial t} = \dfrac{\partial x_{k}}{\partial t}X_{k}$. Now, calculating $\dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i}$,

$$ \dfrac{D }{\partial s}X_{i} = \nabla_{\partial f/\partial s}X_{i} = \nabla_{(\partial x_{j}/\partial s)X_{j}}X_{i} = \dfrac{\partial x_{j}}{\partial s}\nabla_{X_{j}}X_{i} $$

And

$$ \begin{align*} \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} &= \dfrac{D }{\partial t}\left( \dfrac{\partial x_{j}}{\partial s}\nabla_{X_{j}}X_{i} \right) \\ &= \dfrac{\partial^{2} x_{j}}{\partial t\partial s}\nabla_{X_{j}}X_{i} + \dfrac{\partial x_{j}}{\partial s}\nabla_{\partial f / \partial t}(\nabla_{X_{j}}X_{i}) \\ &= \dfrac{\partial^{2} x_{j}}{\partial t\partial s}\nabla_{X_{j}}X_{i} + \dfrac{\partial x_{j}}{\partial s}\nabla_{(\partial x_{k} / \partial t})X_{k}(\nabla_{X_{j}}X_{i}) \\ &= \dfrac{\partial^{2} x_{j}}{\partial t\partial s}\nabla_{X_{j}}X_{i} + \dfrac{\partial x_{j}}{\partial s}\dfrac{\partial x_{k}}{\partial t}\nabla_{X_{k}}\nabla_{X_{j}}X_{i} \end{align*} $$

Therefore, the following is obtained.

$$ \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - \dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} = \dfrac{\partial x_{j}}{\partial s}\dfrac{\partial x_{k}}{\partial t}\left( \nabla_{X_{k}}\nabla_{X_{j}}X_{i} - \nabla_{X_{j}}\nabla_{X_{k}}X_{i}\right) $$

However, since $[X_{i}, X_{j}]=0$, the Riemann curvature is

$$ R(X_{j}, X_{k})X_{i} = \nabla_{X_{k}}\nabla_{X_{j}}X_{i} - \nabla_{X_{j}}\nabla_{X_{k}}X_{i} + \nabla_{[X_{j}, X_{k}]}X_{i} = \nabla_{X_{k}}\nabla_{X_{j}}X_{i} - \nabla_{X_{j}}\nabla_{X_{k}}X_{i} $$

And the above equation is,

$$ \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - \dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} = \dfrac{\partial x_{j}}{\partial s}\dfrac{\partial x_{k}}{\partial t}R(X_{j}, X_{k})X_{i} $$

By substituting this into $\eqref{1}$, since $R$ is linear,

$$ \begin{align*} \dfrac{D }{\partial t} \dfrac{D }{\partial s}V - \dfrac{D }{\partial s} \dfrac{D }{\partial t}V &= \sum_{i}v^{i}\left( \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - \dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} \right) \\ &= \sum_{i}v^{i}\dfrac{\partial x_{j}}{\partial s}\dfrac{\partial x_{k}}{\partial t}R(X_{j}, X_{k})X_{i} \\ &= \sum_{i}R(\dfrac{\partial x_{j}}{\partial s}X_{j}, \dfrac{\partial x_{k}}{\partial t}X_{k})v^{i}X_{i} \\ &= \sum_{i}R(\dfrac{\partial f}{\partial s}, \dfrac{\partial f}{\partial t})V \end{align*} $$


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p98-99 ↩︎