kth Order Differential Forms
📂Geometry kth Order Differential Forms Overview Just as we defined the second-order differential form , we generalize to define the k-th order forms on the differential manifold M M M .
If the concept of a differential manifold is challenging, it can be simply thought of as M = R n M = \mathbb{R}^{n} M = R n .
Build-up Let’s say M M M is a n n n -dimensional differential manifold. p ∈ M p \in M p ∈ M is a point in M M M , and T p M T_{p}M T p M is the tangent space at point p p p in M M M . T p ∗ M T_{p}^{\ast}M T p ∗ M is the cotangent space , which is the dual space of the tangent space. Let’s define Λ k ( T p ∗ M ) \Lambda^{k} (T_{p}^{\ast}M) Λ k ( T p ∗ M ) as a set of multilinear alternating functions as follows.
Λ k ( T p ∗ M ) : = { φ : T p M × ⋯ × T p M ⏟ k times → R ∣ φ is k-linear alternating map }
\Lambda^{k} (T_{p}^{\ast}M) := \left\{ \varphi : \underbrace{T_{p}M \times \cdots \times T_{p}M}_{k \text{ times}} \to \mathbb{R}\ | \ \varphi \text{ is k-linear alternating map} \right\}
Λ k ( T p ∗ M ) := ⎩ ⎨ ⎧ φ : k times T p M × ⋯ × T p M → R ∣ φ is k-linear alternating map ⎭ ⎬ ⎫
For φ 1 , … , φ k ∈ T p ∗ M \varphi_{1}, \dots, \varphi_{k} \in T_{p}^{\ast}M φ 1 , … , φ k ∈ T p ∗ M , we define the wedge product ∧ \wedge ∧ as follows, making ( φ 1 ∧ φ 2 ∧ ⋯ ∧ φ k ) (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{k}) ( φ 1 ∧ φ 2 ∧ ⋯ ∧ φ k ) an element of Λ k ( T p ∗ M ) \Lambda^{k} (T_{p}^{\ast}M) Λ k ( T p ∗ M ) .
( φ 1 ∧ φ 2 ∧ ⋯ ∧ φ k ) ( v 1 , v 2 , … , v k ) = det [ φ i ( v j ) ] , i , j = 1 , … , k
(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{k})(v_{1}, v_{2}, \dots, v_{k}) = \det \left[ \varphi_{i}(v_{j}) \right],\quad i,j=1,\dots,k
( φ 1 ∧ φ 2 ∧ ⋯ ∧ φ k ) ( v 1 , v 2 , … , v k ) = det [ φ i ( v j ) ] , i , j = 1 , … , k
For convenience, let’s denote it as follows.
( d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ) p = notation ( d x i 1 ) p ∧ ( d x i 2 ) p ∧ ⋯ ∧ ( d x i k ) p ∈ Λ k ( T p ∗ M )
(dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}})_{p} \overset{\text{notation}}{=} (dx_{i_{1}})_{p} \wedge (dx_{i_{2}})_{p} \wedge \cdots \wedge (dx_{i_{k}})_{p} \in \Lambda^{k} (T_{p}^{\ast}M)
( d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ) p = notation ( d x i 1 ) p ∧ ( d x i 2 ) p ∧ ⋯ ∧ ( d x i k ) p ∈ Λ k ( T p ∗ M )
At this point, i 1 , i 2 , … , i k = 1 , … , n i_{1}, i_{2}, \dots, i_{k} = 1, \dots, n i 1 , i 2 , … , i k = 1 , … , n . Thus, Λ k ( T p ∗ M ) \Lambda^{k} (T_{p}^{\ast}M) Λ k ( T p ∗ M ) becomes a vector space .
Theorem The set below
B = { ( d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ) p : i 1 < i 2 < ⋯ < i k , i j ∈ { 1 , … , n } }
\mathcal{B} = \left\{ (dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}})_{p} : i_{1} \lt i_{2} \lt \cdots \lt i_{k},\ i_{j}\in \left\{ 1,\dots,n \right\} \right\}
B = { ( d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ) p : i 1 < i 2 < ⋯ < i k , i j ∈ { 1 , … , n } }
is a basis of Λ k ( T p ∗ M ) \Lambda^{k} (T_{p}^{\ast}M) Λ k ( T p ∗ M ) .
Proof According to the definition of a basis , it suffices to show that B \mathcal{B} B is linearly independent and generates Λ k ( T p ∗ M ) \Lambda^{k} (T_{p}^{\ast}M) Λ k ( T p ∗ M ) . For convenience, let’s denote the basis of the tangent space T p M T_{p}M T p M of M M M as follows.
{ e i } = { ∂ ∂ x i }
\left\{ e_{i} \right\} = \left\{ \dfrac{\partial }{\partial x_{i}} \right\}
{ e i } = { ∂ x i ∂ }
Part 1. Linear Independence
We only need to show that the only solution to the following equation is where all a i 1 … i k a_{i_{1}\dots i_{k}} a i 1 … i k are 0 0 0 .
∑ i 1 < ⋯ < i k a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k = 0
\sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}}dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}} = 0
i 1 < ⋯ < i k ∑ a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k = 0
Let’s substitute
( e j 1 , … , e j k ) , j 1 < ⋯ < j k , j ℓ ∈ { 1 , … , n }
\left(e_{j_{1}}, \dots, e_{j_{k}} \right),\quad j_{1}\lt \cdots \lt j_{k},\ j_{\ell} \in \left\{ 1,\dots, n \right\}
( e j 1 , … , e j k ) , j 1 < ⋯ < j k , j ℓ ∈ { 1 , … , n }
into it.
0 = ∑ i 1 < ⋯ < i k a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ( e j 1 , … , e j k ) = ∑ i 1 < ⋯ < i k a i 1 … i k ∣ d x i 1 ( e j 1 ) d x i 1 ( e j 2 ) ⋯ d x i 1 ( e j k ) d x i 2 ( e j 1 ) d x i 2 ( e j 2 ) ⋯ d x i 2 ( e j k ) ⋮ ⋮ ⋱ ⋮ d x i k ( e j 1 ) d x i k ( e j 2 ) ⋯ d x i k ( e j k ) ∣
\begin{align*}
0 =&\ \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}}dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}\left(e_{j_{1}}, \dots, e_{j_{k}} \right)
\\[1em] =&\ \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}} \begin{vmatrix}
dx_{i_{1}}(e_{j_{1}}) & dx_{i_{1}}(e_{j_{2}}) & \cdots & dx_{i_{1}}(e_{j_{k}})
\\[1em] dx_{i_{2}}(e_{j_{1}}) & dx_{i_{2}}(e_{j_{2}}) & \cdots & dx_{i_{2}}(e_{j_{k}})
\\[1em] \vdots & \vdots & \ddots & \vdots
\\[1em] dx_{i_{k}}(e_{j_{1}}) & dx_{i_{k}}(e_{j_{2}}) & \cdots & dx_{i_{k}}(e_{j_{k}}) \end{vmatrix}
\end{align*}
0 = = i 1 < ⋯ < i k ∑ a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ( e j 1 , … , e j k ) i 1 < ⋯ < i k ∑ a i 1 … i k d x i 1 ( e j 1 ) d x i 2 ( e j 1 ) ⋮ d x i k ( e j 1 ) d x i 1 ( e j 2 ) d x i 2 ( e j 2 ) ⋮ d x i k ( e j 2 ) ⋯ ⋯ ⋱ ⋯ d x i 1 ( e j k ) d x i 2 ( e j k ) ⋮ d x i k ( e j k )
Looking at the first column of the determinant, if there’s any element that is not 0 0 0 , then j 1 ∈ { i 1 , … i k } j_{1} \in \left\{ i_{1}, \dots i_{k} \right\} j 1 ∈ { i 1 , … i k } must be the case. Applying this condition to subsequent columns yields the following result.
j 1 , … , j k ∈ { i 1 , … i k }
j_{1}, \dots, j_{k} \in \left\{ i_{1}, \dots i_{k} \right\}
j 1 , … , j k ∈ { i 1 , … i k }
However, since there are conditions that both indices i i i and j j j are i 1 < ⋯ < i k i_{1}\lt \cdots \lt i_{k} i 1 < ⋯ < i k , j 1 < ⋯ < j k j_{1}\lt \cdots \lt j_{k} j 1 < ⋯ < j k , i ℓ = j ℓ i_{\ell} = j_{\ell} i ℓ = j ℓ holds.
0 = a j 1 … j k
0 = a_{j_{1}\dots j_{k}}
0 = a j 1 … j k
By the same reasoning, it’s found that all coefficients a a a must be 0 0 0 .
Part 2. Spanning
If f ∈ Λ k ( T p ∗ M ) f \in \Lambda^{k} (T_{p}^{\ast}M) f ∈ Λ k ( T p ∗ M ) , we need to show that f f f can be expressed as a linear combination of B \mathcal{B} B , as follows.
f = ∑ i 1 < ⋯ < i k a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k
f = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1} \dots i_{k}} dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}
f = i 1 < ⋯ < i k ∑ a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k
Let’s define g g g as follows.
g = ∑ i 1 < ⋯ < i k f ( e i 1 , … , e i k ) d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k
g = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } f(e_{i_{1}},\dots,e_{i_{k}}) dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}
g = i 1 < ⋯ < i k ∑ f ( e i 1 , … , e i k ) d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k
Then, it becomes clear that g g g is f f f . After substituting ( e i 1 , … , e i k ) (e_{i_{1}},\dots,e_{i_{k}}) ( e i 1 , … , e i k ) ,
g ( e i 1 , … , e i k ) = ∑ i 1 < ⋯ < i k f ( e i 1 , … , e i k ) d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ( e i 1 , … , e i k ) = f ( e i 1 , … , e i k )
\begin{align*}
g(e_{i_{1}},\dots,e_{i_{k}}) =&\ \sum \limits_{i_{1} \lt \cdots \lt i_{k} } f(e_{i_{1}},\dots,e_{i_{k}}) dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}(e_{i_{1}},\dots,e_{i_{k}})
\\ =&\ f(e_{i_{1}},\dots,e_{i_{k}})
\end{align*}
g ( e i 1 , … , e i k ) = = i 1 < ⋯ < i k ∑ f ( e i 1 , … , e i k ) d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ( e i 1 , … , e i k ) f ( e i 1 , … , e i k )
Therefore, if we let,
f = g = ∑ i 1 < ⋯ < i k a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k
f = g = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1} \dots i_{k}} dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}
f = g = i 1 < ⋯ < i k ∑ a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k
■
Definition The function ω : M → Λ k ( T p ∗ M ) \omega : M \to \Lambda^{k} (T_{p}^{\ast}M) ω : M → Λ k ( T p ∗ M ) that maps the point p ∈ M p \in M p ∈ M as follows is defined as the k-th order form in M M M .
ω ( p ) = ∑ i 1 < ⋯ < i k a i 1 … i k ( p ) ( d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ) p , i j ∈ { 1 , … , n }
\omega (p) = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}}(p)(dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}})_{p},\quad i_{j} \in \left\{ 1, \dots, n \right\}
ω ( p ) = i 1 < ⋯ < i k ∑ a i 1 … i k ( p ) ( d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k ) p , i j ∈ { 1 , … , n }
ω = ∑ i 1 < ⋯ < i k a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k
\omega = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}}dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}
ω = i 1 < ⋯ < i k ∑ a i 1 … i k d x i 1 ∧ d x i 2 ∧ ⋯ ∧ d x i k
At this point, a i 1 … i k : M → R a_{i_{1}\dots i_{k}} : M \to \mathbb{R} a i 1 … i k : M → R holds. If each a i 1 … i k a_{i_{1}\dots i_{k}} a i 1 … i k is differentiable , then ω \omega ω is called a k-th order differential form . Also, for convenience, let’s denote it as I = ( i 1 , … , i k ) I = (i_{1},\dots,i_{k}) I = ( i 1 , … , i k ) and represent it as follows.
ω = ∑ I a I d x I
\omega = \sum \limits_{I} a_{I}dx_{I}
ω = I ∑ a I d x I
■
Explanation By definition, in a n n n -dimensional manifold, there can exist forms up to the k-th order. Moreover, a k-th order form in a n n n -dimensional manifold has ( n k ) \binom{n}{k} ( k n ) terms. Therefore, Λ k ( T p ∗ M ) \Lambda^{k} (T_{p}^{\ast}M) Λ k ( T p ∗ M ) is a ( n k ) \binom{n}{k} ( k n ) -dimensional vector space. Notably, a 0 0 0 -form on the differential manifold M M M is defined by the function f : M → R f : M \to \mathbb{R} f : M → R defined on M M M .
For example, up to 3rd order forms exist in R 3 \mathbb{R}^{3} R 3 .
0th order form: Functions on R 3 \mathbb{R}^{3} R 3 1st order form: a 1 d x 1 + a 2 d x 2 + a 3 d x 3 a_{1}dx_{1} + a_{2}dx_{2} + a_{3}dx_{3} a 1 d x 1 + a 2 d x 2 + a 3 d x 3 2nd order form: a 12 d x 1 ∧ d x 2 + a 13 d x 1 ∧ d x 3 + a 23 d x 2 ∧ d x 3 a_{12}dx_{1}\wedge dx_{2} + a_{13}dx_{1}\wedge dx_{3} + a_{23} dx_{2} \wedge dx_{3} a 12 d x 1 ∧ d x 2 + a 13 d x 1 ∧ d x 3 + a 23 d x 2 ∧ d x 3 3rd order form: a 123 d x 1 ∧ d x 2 ∧ d x 3 a_{123}dx_{1} \wedge dx_{2} \wedge dx_{3} a 123 d x 1 ∧ d x 2 ∧ d x 3 See Also