logo

kth Order Differential Forms 📂Geometry

kth Order Differential Forms

Overview

Just as we defined the second-order differential form, we generalize to define the k-th order forms on the differential manifold MM.

If the concept of a differential manifold is challenging, it can be simply thought of as M=RnM = \mathbb{R}^{n}.

Build-up

Let’s say MM is a nn-dimensional differential manifold. pMp \in M is a point in MM, and TpMT_{p}M is the tangent space at point pp in MM. TpMT_{p}^{\ast}M is the cotangent space, which is the dual space of the tangent space. Let’s define Λk(TpM)\Lambda^{k} (T_{p}^{\ast}M) as a set of multilinear alternating functions as follows.

Λk(TpM):={φ:TpM××TpMk timesR  φ is k-linear alternating map} \Lambda^{k} (T_{p}^{\ast}M) := \left\{ \varphi : \underbrace{T_{p}M \times \cdots \times T_{p}M}_{k \text{ times}} \to \mathbb{R}\ | \ \varphi \text{ is k-linear alternating map} \right\}

For φ1,,φkTpM\varphi_{1}, \dots, \varphi_{k} \in T_{p}^{\ast}M, we define the wedge product \wedge as follows, making (φ1φ2φk)(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{k}) an element of Λk(TpM)\Lambda^{k} (T_{p}^{\ast}M).

(φ1φ2φk)(v1,v2,,vk)=det[φi(vj)],i,j=1,,k (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{k})(v_{1}, v_{2}, \dots, v_{k}) = \det \left[ \varphi_{i}(v_{j}) \right],\quad i,j=1,\dots,k

For convenience, let’s denote it as follows.

(dxi1dxi2dxik)p=notation(dxi1)p(dxi2)p(dxik)pΛk(TpM) (dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}})_{p} \overset{\text{notation}}{=} (dx_{i_{1}})_{p} \wedge (dx_{i_{2}})_{p} \wedge \cdots \wedge (dx_{i_{k}})_{p} \in \Lambda^{k} (T_{p}^{\ast}M)

At this point, i1,i2,,ik=1,,ni_{1}, i_{2}, \dots, i_{k} = 1, \dots, n. Thus, Λk(TpM)\Lambda^{k} (T_{p}^{\ast}M) becomes a vector space.

Theorem

The set below

B={(dxi1dxi2dxik)p:i1<i2<<ik, ij{1,,n}} \mathcal{B} = \left\{ (dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}})_{p} : i_{1} \lt i_{2} \lt \cdots \lt i_{k},\ i_{j}\in \left\{ 1,\dots,n \right\} \right\}

is a basis of Λk(TpM)\Lambda^{k} (T_{p}^{\ast}M).

Proof

According to the definition of a basis, it suffices to show that B\mathcal{B} is linearly independent and generates Λk(TpM)\Lambda^{k} (T_{p}^{\ast}M). For convenience, let’s denote the basis of the tangent space TpMT_{p}M of MM as follows.

{ei}={xi} \left\{ e_{i} \right\} = \left\{ \dfrac{\partial }{\partial x_{i}} \right\}

  • Part 1. Linear Independence

    We only need to show that the only solution to the following equation is where all ai1ika_{i_{1}\dots i_{k}} are 00.

    i1<<ikai1ikdxi1dxi2dxik=0 \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}}dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}} = 0

    Let’s substitute

    (ej1,,ejk),j1<<jk, j{1,,n} \left(e_{j_{1}}, \dots, e_{j_{k}} \right),\quad j_{1}\lt \cdots \lt j_{k},\ j_{\ell} \in \left\{ 1,\dots, n \right\}

    into it.

    0= i1<<ikai1ikdxi1dxi2dxik(ej1,,ejk)= i1<<ikai1ikdxi1(ej1)dxi1(ej2)dxi1(ejk)dxi2(ej1)dxi2(ej2)dxi2(ejk)dxik(ej1)dxik(ej2)dxik(ejk) \begin{align*} 0 =&\ \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}}dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}\left(e_{j_{1}}, \dots, e_{j_{k}} \right) \\[1em] =&\ \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}} \begin{vmatrix} dx_{i_{1}}(e_{j_{1}}) & dx_{i_{1}}(e_{j_{2}}) & \cdots & dx_{i_{1}}(e_{j_{k}}) \\[1em] dx_{i_{2}}(e_{j_{1}}) & dx_{i_{2}}(e_{j_{2}}) & \cdots & dx_{i_{2}}(e_{j_{k}}) \\[1em] \vdots & \vdots & \ddots & \vdots \\[1em] dx_{i_{k}}(e_{j_{1}}) & dx_{i_{k}}(e_{j_{2}}) & \cdots & dx_{i_{k}}(e_{j_{k}}) \end{vmatrix} \end{align*}

    Looking at the first column of the determinant, if there’s any element that is not 00, then j1{i1,ik}j_{1} \in \left\{ i_{1}, \dots i_{k} \right\} must be the case. Applying this condition to subsequent columns yields the following result.

    j1,,jk{i1,ik} j_{1}, \dots, j_{k} \in \left\{ i_{1}, \dots i_{k} \right\}

    However, since there are conditions that both indices ii and jj are i1<<iki_{1}\lt \cdots \lt i_{k}, j1<<jkj_{1}\lt \cdots \lt j_{k}, i=ji_{\ell} = j_{\ell} holds.

    0=aj1jk 0 = a_{j_{1}\dots j_{k}}

    By the same reasoning, it’s found that all coefficients aa must be 00.

  • Part 2. Spanning

    If fΛk(TpM)f \in \Lambda^{k} (T_{p}^{\ast}M), we need to show that ff can be expressed as a linear combination of B\mathcal{B}, as follows.

    f=i1<<ikai1ikdxi1dxi2dxik f = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1} \dots i_{k}} dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}

    Let’s define gg as follows.

    g=i1<<ikf(ei1,,eik)dxi1dxi2dxik g = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } f(e_{i_{1}},\dots,e_{i_{k}}) dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}

    Then, it becomes clear that gg is ff. After substituting (ei1,,eik)(e_{i_{1}},\dots,e_{i_{k}}),

    g(ei1,,eik)= i1<<ikf(ei1,,eik)dxi1dxi2dxik(ei1,,eik)= f(ei1,,eik) \begin{align*} g(e_{i_{1}},\dots,e_{i_{k}}) =&\ \sum \limits_{i_{1} \lt \cdots \lt i_{k} } f(e_{i_{1}},\dots,e_{i_{k}}) dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}(e_{i_{1}},\dots,e_{i_{k}}) \\ =&\ f(e_{i_{1}},\dots,e_{i_{k}}) \end{align*}

    Therefore, if we let,

    f=g=i1<<ikai1ikdxi1dxi2dxik f = g = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1} \dots i_{k}} dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}

Definition

The function ω:MΛk(TpM)\omega : M \to \Lambda^{k} (T_{p}^{\ast}M) that maps the point pMp \in M as follows is defined as the k-th order form in MM.

ω(p)=i1<<ikai1ik(p)(dxi1dxi2dxik)p,ij{1,,n} \omega (p) = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}}(p)(dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}})_{p},\quad i_{j} \in \left\{ 1, \dots, n \right\}

ω=i1<<ikai1ikdxi1dxi2dxik \omega = \sum \limits_{i_{1} \lt \cdots \lt i_{k} } a_{i_{1}\dots i_{k}}dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{k}}

At this point, ai1ik:MRa_{i_{1}\dots i_{k}} : M \to \mathbb{R} holds. If each ai1ika_{i_{1}\dots i_{k}} is differentiable, then ω\omega is called a k-th order differential form. Also, for convenience, let’s denote it as I=(i1,,ik)I = (i_{1},\dots,i_{k}) and represent it as follows.

ω=IaIdxI \omega = \sum \limits_{I} a_{I}dx_{I}

Explanation

By definition, in a nn-dimensional manifold, there can exist forms up to the k-th order. Moreover, a k-th order form in a nn-dimensional manifold has (nk)\binom{n}{k} terms. Therefore, Λk(TpM)\Lambda^{k} (T_{p}^{\ast}M) is a (nk)\binom{n}{k}-dimensional vector space. Notably, a 00-form on the differential manifold MM is defined by the function f:MRf : M \to \mathbb{R} defined on MM.

For example, up to 3rd order forms exist in R3\mathbb{R}^{3}.

  • 0th order form: Functions on R3\mathbb{R}^{3}
  • 1st order form: a1dx1+a2dx2+a3dx3a_{1}dx_{1} + a_{2}dx_{2} + a_{3}dx_{3}
  • 2nd order form: a12dx1dx2+a13dx1dx3+a23dx2dx3a_{12}dx_{1}\wedge dx_{2} + a_{13}dx_{1}\wedge dx_{3} + a_{23} dx_{2} \wedge dx_{3}
  • 3rd order form: a123dx1dx2dx3a_{123}dx_{1} \wedge dx_{2} \wedge dx_{3}

See Also