logo

The Christoffel Symbols are Intrinsic 📂Geometry

The Christoffel Symbols are Intrinsic

Theorem1

The Christoffel symbols Γijk\Gamma_{ij}^{k} satisfy the following equation. In other words, they are intrinsic.

Γijk=12l=12glk(gljuigijul+giluj) \Gamma_{ij}^{k} = \dfrac{1}{2} \sum \limits_{l=1}^{2} g^{lk} \left( \dfrac{\partial g_{lj}}{\partial u_{i}} - \dfrac{\partial g_{ij}}{\partial u_{l}} + \dfrac{\partial g_{il}}{\partial u_{j}} \right)

Explanation

Gauss proved it.

The Christoffel symbols depend only on the Riemann metric and are independent of the normal vector. Therefore, by using Christoffel symbols, one can understand the structure of a surface without leaving the surface.

Proof

First, the partial derivatives of each index of the Riemann metric coefficients are as follows.

giluj=ujxi,xl=xij,xl+xi,xlj \dfrac{\partial g_{il}}{\partial u_{j}} = \dfrac{\partial}{\partial u_{j}} \left\langle \mathbf{x}_{i} , \mathbf{x}_{l} \right\rangle = \langle \mathbf{x}_{ij} , \mathbf{x}_{l} \rangle + \langle \mathbf{x}_{i}, \mathbf{x}_{lj} \rangle

gijul=ulxi,xj=xil,xj+xi,xjl \dfrac{\partial g_{ij}}{\partial u_{l}} = \dfrac{\partial}{\partial u_{l}} \left\langle \mathbf{x}_{i} , \mathbf{x}_{j} \right\rangle = \langle \mathbf{x}_{il} , \mathbf{x}_{j} \rangle + \langle \mathbf{x}_{i}, \mathbf{x}_{jl} \rangle

gljui=uixl,xj=xli,xj+xl,xji \dfrac{\partial g_{lj}}{\partial u_{i}} = \dfrac{\partial}{\partial u_{i}} \left\langle \mathbf{x}_{l} , \mathbf{x}_{j} \right\rangle = \langle \mathbf{x}_{li} , \mathbf{x}_{j} \rangle + \langle \mathbf{x}_{l}, \mathbf{x}_{ji} \rangle

Since xij=xji\mathbf{\mathbf{x}}_{ij} = \mathbf{\mathbf{x}}_{ji},

gilujgijul+gljui= xij,xl+xi,xljxil,xjxi,xjl+xli,xj+xl,xji= xij,xl+xl,xji= 2xij,xl \begin{align*} \dfrac{\partial g_{il}}{\partial u_{j}} - \dfrac{\partial g_{ij}}{\partial u_{l}} + \dfrac{\partial g_{lj}}{\partial u_{i}} =&\ \langle \mathbf{x}_{ij} , \mathbf{x}_{l} \rangle + \langle \mathbf{x}_{i}, \mathbf{x}_{lj} \rangle - \langle \mathbf{x}_{il} , \mathbf{x}_{j} \rangle - \langle \mathbf{x}_{i}, \mathbf{x}_{jl} \rangle + \langle \mathbf{x}_{li} , \mathbf{x}_{j} \rangle + \langle \mathbf{x}_{l}, \mathbf{x}_{ji} \rangle \\ =&\ \langle \mathbf{x}_{ij} , \mathbf{x}_{l} \rangle + \langle \mathbf{x}_{l}, \mathbf{x}_{ji} \rangle \\ =&\ 2 \langle \mathbf{x}_{ij} , \mathbf{x}_{l} \rangle \end{align*}

Therefore, the Christoffel symbols are

Γijk=l=12xij,xlglk=12l=12(gljuigijul+giluj)glk \Gamma_{ij}^{k} = \sum \limits_{l=1}^{2} \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk} = \dfrac{1}{2} \sum \limits_{l=1}^{2} \left( \dfrac{\partial g_{lj}}{\partial u_{i}} - \dfrac{\partial g_{ij}}{\partial u_{l}} + \dfrac{\partial g_{il}}{\partial u_{j}} \right) g^{lk}

Example

Suppose we are given a Monge patch as in x(u1,u2)=(u1,u2,f(u1,u2))\mathbf{x}(u_{1}, u_{2}) = \left( u_{1}, u_{2}, f(u_{1}, u_{2}) \right). Then

x1=u1x=(1,0,f1)andx2=(0,1,f2) \mathbf{x}_{1} = \partial_{u_{1}}\mathbf{x} = (1,0,f_{1}) \quad \text{and} \quad \mathbf{x}_{2} = (0,1,f_{2})

At this time, fi=uiff_{i} = \partial_{u_{i}}f is. Γ111\Gamma_{11}^{1} can be obtained in the following two ways.

Extrinsically computing

x1×x2=(f1,f2,1) \mathbf{x}_{1} \times \mathbf{x}_{2} = (-f_{1}, -f_{2}, 1)

The unit normal is

n=(f1,f2,1)(f1)2+(f2)2+1 \mathbf{n} = \dfrac{(-f_{1}, -f_{2}, 1)}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}}

Gauss formula

xij=Lijn+k=12Γijkxk \mathbf{x}_{ij} = L_{ij} \mathbf{n} + \sum \limits_{k=1}^{2} \Gamma_{ij}^{k} \mathbf{x}_{k}

The second derivative of x\mathbf{x} is as follows according to the Gauss formula.

x11=(0,0,f11)=L11n+Γ111x1+Γ112x2 \mathbf{x}_{11} = (0, 0, f_{11}) = L_{11}\mathbf{n} + \Gamma_{11}^{1}\mathbf{x}_{1} + \Gamma_{11}^{2}\mathbf{x}_{2}

Therefore, the coefficients of the second fundamental form are Lij=xij,nL_{ij} = \langle \mathbf{x}_{ij}, \mathbf{n} \rangle

L11=(0,0,f11),(f1,f2,1)(f1)2+(f2)2+1=f11(f1)2+(f2)2+1 L_{11} = \left\langle (0,0,f_{11}), \dfrac{(-f_{1}, -f_{2}, 1)}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}}\right\rangle = \dfrac{f_{11}}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}}

If we break down x11\mathbf{x}_{11} into components, we get the following.

x11=(0,0,f11)=L11(f1)2+(f2)2+1(f1,f2,1)+Γ111(1,0,f1)+Γ112(0,1,f2) \mathbf{x}_{11} = (0, 0, f_{11}) = \dfrac{L_{11}}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}}(-f_{1}, -f_{2}, 1) + \Gamma_{11}^{1}(1,0,f_{1}) + \Gamma_{11}^{2}(0,1,f_{2})

Looking at the first component, we obtain the following equation.

0= L11(f1)(f1)2+(f2)2+1+Γ111    Γ111= L11(f1)(f1)2+(f2)2+1    Γ111= f1f11(f1)2+(f2)2+1 \begin{align*} && 0 =&\ \dfrac{L_{11}(-f_{1})}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}} + \Gamma_{11}^{1} \\[1em] \implies&& \Gamma_{11}^{1} =&\ \dfrac{L_{11}(f_{1})}{\sqrt{(f_{1})^{2} + (f_{2})^{2} + 1}} \\[1em] \implies&& \Gamma_{11}^{1} =&\ \dfrac{f_{1} f_{11}}{(f_{1})^{2} + (f_{2})^{2} + 1} \end{align*}

Intrinsically computing

According to the theorem above, Γ111\Gamma_{11}^{1} can be computed as follows.

Γ111= 12l=12gl1(gl1u1g11ul+g1lu1)= 12[g11(g11u1g11u1+g11u1)+g21(g21u1g11u2+g12u1)]= 12[g11g11u1+2g21g21u1g21g11u2] \begin{align*} \Gamma_{11}^{1} =&\ \dfrac{1}{2} \sum \limits_{l=1}^{2} g^{l1} \left( \dfrac{\partial g_{l1}}{\partial u_{1}} - \dfrac{\partial g_{11}}{\partial u_{l}} + \dfrac{\partial g_{1l}}{\partial u_{1}} \right) \\ =&\ \dfrac{1}{2} \left[ g^{11} \left( \dfrac{\partial g_{11}}{\partial u_{1}} - \dfrac{\partial g_{11}}{\partial u_{1}} + \dfrac{\partial g_{11}}{\partial u_{1}} \right) + g^{21} \left( \dfrac{\partial g_{21}}{\partial u_{1}} - \dfrac{\partial g_{11}}{\partial u_{2}} + \dfrac{\partial g_{12}}{\partial u_{1}} \right) \right] \\ =&\ \dfrac{1}{2} \left[ g^{11} \dfrac{\partial g_{11}}{\partial u_{1}} + 2g^{21}\dfrac{\partial g_{21}}{\partial u_{1}} - g^{21}\dfrac{\partial g_{11}}{\partial u_{2}} \right] \end{align*}

The coefficients of the first fundamental form are gij=x1,x2g_{ij} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{2} \right\rangle

[gij]=[1+(f1)2f1f2f1f21+(f2)2] \left[ g_{ij} \right] = \begin{bmatrix} 1+(f_{1})^{2} & f_{1}f_{2} \\[1em] f_{1}f_{2} & 1 + (f_{2})^{2} \end{bmatrix}

The inverse matrix is

[gij]1=[glk]=1(f1)2+(f2)2+1[1+(f2)2f1f2f1f21+(f1)2] \left[ g_{ij} \right]^{-1} = \left[ g^{lk} \right] = \dfrac{1}{(f_{1})^{2} + (f_{2})^{2} + 1}\begin{bmatrix} 1+(f_{2})^{2} & -f_{1}f_{2} \\[1em] -f_{1}f_{2} & 1 + (f_{1})^{2} \end{bmatrix}

So, when we gather everything needed, we get the following.

g11u1= u1(1+(f1)2)=2f1f11g21u1= u1(f1f2)=f11f2+f1f21g11u2= u2(1+(f1)2)=2f1f12 \begin{align*} \dfrac{\partial g_{11}}{\partial u_{1}} =&\ \dfrac{\partial }{\partial u_{1}}\left( 1+ (f_{1})^{2} \right) = 2f_{1}f_{11} \\ \dfrac{\partial g_{21}}{\partial u_{1}} =&\ \dfrac{\partial }{\partial u_{1}}\left( f_{1}f_{2} \right) = f_{11}f_{2} + f_{1}f_{21} \\ \dfrac{\partial g_{11}}{\partial u_{2}} =&\ \dfrac{\partial }{\partial u_{2}}\left( 1+ (f_{1})^{2} \right) = 2f_{1}f_{12} \end{align*}

And

g11= 1+(f2)2(f1)2+(f2)2+1g21= f1f2(f1)2+(f2)2+1 \begin{align*} g^{11} =&\ \dfrac{1+(f_{2})^{2}}{(f_{1})^{2} + (f_{2})^{2} + 1} \\ g^{21} =&\ \dfrac{-f_{1}f_{2}}{(f_{1})^{2} + (f_{2})^{2} + 1} \end{align*}

Now, if we substitute, we get as follows.

Γ111= 12[g11g11u1+2g21g21u1g21g11u2]= 12[1+(f2)2(f1)2+(f2)2+12f1f11+2f1f2(f1)2+(f2)2+1(f11f2+f1f21)f1f2(f1)2+(f2)2+12f1f12]= 1(f1)2+(f2)2+1[(1+(f2)2)f1f11+(f1f2)(f11f2+f1f21)(f1f2)f1f12]= 1(f1)2+(f2)2+1[f1f11+f1(f2)2f11f1(f2)2f11(f1)2f2f21+(f1)2f2f12]= 1(f1)2+(f2)2+1[f1f11]= f1f11(f1)2+(f2)2+1 \begin{align*} \Gamma_{11}^{1} =&\ \dfrac{1}{2} \left[ g^{11} \dfrac{\partial g_{11}}{\partial u_{1}} + 2g^{21}\dfrac{\partial g_{21}}{\partial u_{1}} - g^{21}\dfrac{\partial g_{11}}{\partial u_{2}} \right] \\ =&\ \dfrac{1}{2} \left[ \dfrac{1+(f_{2})^{2}}{(f_{1})^{2} + (f_{2})^{2} + 1} 2f_{1}f_{11} + 2\dfrac{-f_{1}f_{2}}{(f_{1})^{2} + (f_{2})^{2} + 1} \left( f_{11}f_{2} + f_{1}f_{21} \right)- \dfrac{-f_{1}f_{2}}{(f_{1})^{2} + (f_{2})^{2} + 1}2f_{1}f_{12} \right] \\ =&\ \dfrac{1}{(f_{1})^{2} + (f_{2})^{2} + 1}\left[ \left( 1+(f_{2})^{2} \right)f_{1}f_{11} + \left( -f_{1}f_{2} \right) \left( f_{11}f_{2} + f_{1}f_{21} \right)- (-f_{1}f_{2})f_{1}f_{12} \right] \\ =&\ \dfrac{1}{(f_{1})^{2} + (f_{2})^{2} + 1}\left[ f_{1}f_{11} + f_{1}(f_{2})^{2}f_{11} - f_{1}(f_{2})^{2}f_{11} -(f_{1})^{2}f_{2}f_{21} + (f_{1})^{2}f_{2}f_{12} \right] \\ =&\ \dfrac{1}{(f_{1})^{2} + (f_{2})^{2} + 1}\left[ f_{1}f_{11} \right] \\ =&\ \dfrac{f_{1}f_{11}}{(f_{1})^{2} + (f_{2})^{2} + 1} \end{align*}

We can see that computing Christoffel symbols intrinsically is more complicated compared to when not doing so.


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p105-106 ↩︎