logo

Conformal Mapping 📂Vector Analysis

Conformal Mapping

Definition1

Assuming the mapping f:RnRm\mathbf{f} : \mathbb{R}^{n} \to \mathbb{R}^{m} is given as follows.

f(x)=(f1(x),f2(x),,fm(x)),xRn \mathbf{f}(\mathbf{x}) = \left( f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \dots, f_{m}(\mathbf{x}) \right),\quad \mathbf{x}\in \R^{n}

The total derivative, or Jacobian matrix of f\mathbf{f} is as follows.

f=J=[f1x1f1xnfmx1fmxn] \mathbf{f}^{\prime} = J = \begin{bmatrix} \dfrac{\partial f_{1}}{\partial x_{1}} & \cdots & \dfrac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \dfrac{\partial f_{m}}{\partial x_{1}} & \cdots & \dfrac{\partial f_{m}}{\partial x_{n}} \end{bmatrix}

If at every point xRn\mathbf{x} \in \R^{n}, the rank of the Jacobian matrix of f\mathbf{f} is nn, then f\mathbf{f} is called a regular mapping.


  1. Barrett O’Neill, Elementary Differential Geometry (Revised 2nd Edition, 2006), p39-40 ↩︎