logo

A Simpler Proof of the Divisibility Test for 11 📂Number Theory

A Simpler Proof of the Divisibility Test for 11

Buildup

In this post, we use the following notations for convenience regarding numerical bases. [anan1a1a0]:=an10n+an110n1++a1101+a0100 [a_{n} a_{n-1} … a_{1} a_{0}] := a_{n} \cdot 10^{n} + a_{n-1} \cdot 10^{n-1} +…+ a_{1} \cdot 10^{1} + a_{0} \cdot 10^{0} For example, 57145714 can be represented as follows. [5714]=5000+700+10+4=5103+7102+1101+4100 \begin{align*} [5714] =& 5000+700+10+4 \\ =& 5\cdot 10^{3} +7\cdot 10^{2} +1\cdot 10^{1} +4\cdot 10^{0} \end{align*}

Theorem

If anan1++a1a0a_{n} - a_{n-1} + … + a_{1} - a_{0} is a multiple of 1111, then [anan1a1a0][a_{n} a_{n-1} … a_{1} a_{0}] is also a multiple of 1111.

Explanation

Of course, from the divisibility rules of 77 and 1313, we can determine whether a given number is a multiple of 77, 1111, 1313, but in the case of 1111, there is a much easier result and a simple proof. However, unlike the cases of 77, 1111, 1313, it uses congruences, so a very basic knowledge of number theory is required to understand the proof.

Proof

Strategy: The key idea used in the proof is that under modulo 1111, 1010 and 1-1 are congruent. With just this hint, the proof is practically done. 101(mod11) 10 \equiv -1 \pmod {11}


[anan1a1a0]an10n+an110n1++a1101+a0100(mod11)an(1)n+an1(1)n1++a1(1)1+a0(1)0(mod11)anan1+an2+a2a1+a0(mod11) \begin{align*} & [a_{n} a_{n-1} … a_{1} a_{0}] \\ \equiv & a_{n} \cdot 10^{n} + a_{n-1} \cdot 10^{n-1} +…+ a_{1} \cdot 10^{1} + a_{0} \cdot 10^{0} \pmod {11} \\ \equiv & a_{n} {(-1)}^{n}+ a_{n-1} {(-1)}^{n-1}+…+ a_{1} {(-1)}^{1}+ a_{0} {(-1)}^{0} \pmod {11} \\ \equiv & a_{n} - a_{n-1} + a_{n-2} -…+ a_{2} - a_{1} + a_{0} \pmod {11} \end{align*} In other words, if anan1+an2+a2a1+a0a_{n} - a_{n-1} + a_{n-2} -…+ a_{2} - a_{1} + a_{0} is a multiple of 1111, then anan1+an2+a2a1+a00[anan1a1a0](mod11) a_{n} - a_{n-1} + a_{n-2} -…+ a_{2} - a_{1} + a_{0} \equiv 0 \equiv [a_{n} a_{n-1} … a_{1} a_{0}] \pmod {11} In other words, [anan1a1a0][a_{n} a_{n-1} … a_{1} a_{0}] is a multiple of 11.