logo

Inverse Fourier Transform Theorem for Smooth Functions 📂Fourier Analysis

Inverse Fourier Transform Theorem for Smooth Functions

Theorem

Assuming that ff is integrable on R\mathbb{R} and piecewise smooth, then the following equation holds:

limr12πrreiξxf^(ξ)dξ=12[f(x)+f(x+)],xR \lim \limits_{r\to \infty} \frac{1}{2\pi} \int_{-r}^{r}e^{i\xi x} \hat{f}(\xi)d\xi= \frac{1}{2}\big[f(x-)+f(x+) \big],\quad \forall x\in \mathbb{R}

Here, f(x+)f(x+) and f(x)f(x-) are respectively the right-hand limit and left-hand limit of ff at xx.

Description

The inverse Fourier transform theorem used a cutoff function instead of requiring a relatively weak condition for ff. The theorem above is another form of the inverse Fourier transform theorem. The resulting equation is as powerful as the condition is strong. The inverse Fourier transform theorem only required that ff be continuous at best, but here, it even demands smoothness. It could be considered that the following cutoff function was used.

η(x)={1rxr0otherwise \eta (x)=\begin{cases} 1&-r \le x \le r \\ 0 & \text{otherwise} \end{cases}

Proof

First, let’s calculate the following equation:

rreiξ(xy)dξ=eiξ(xy)i(xy)]ξ=rr=eir(xy)eir(xy)i(xy)=2isinr(xy)i(xy)=2sinr(xy)(xy) \begin{align*} \int_{-r}^{r}e^{i\xi (x-y)}d\xi &= \left. \frac{e^{i\xi (x-y)}}{i(x-y)}\right]_{\xi=-r}^{r} \\ &= \frac{e^{ir(x-y)}-e^{-ir(x-y)}}{i(x-y)} \\ &=\frac{2i \sin r(x-y)}{i(x-y)}=\frac{2\sin r(x-y)}{(x-y)} \end{align*}

Using this, we obtain the following equation:

12πrreiξxf^(ξ)dξ=12πrreiξxf(y)eiξydydξ=12πrreiξ(xy)dξf(y)dy=1πsinr(xy)(xy)f(y)dy \begin{align*} \frac{1}{2\pi}\int_{-r}^{r}e^{i\xi x}\hat{f}(\xi)d\xi &= \frac{1}{2\pi}\int_{-r}^{r} e^{i\xi x}\int _{-\infty} ^{\infty}f(y)e^{-i\xi y}dyd\xi \\ &= \frac{1}{2\pi}\int _{-\infty} ^{\infty}\int_{-r}^{r} e^{i\xi (x-y)}d\xi f(y)dy \\ &= \frac{1}{\pi}\int _{-\infty} ^{\infty}\frac{\sin r(x-y)}{(x-y)}f(y)dy \end{align*}

Substituting with xy=yx-y=y, we get:

1πsinr(xy)(xy)f(y)dy=1πsin(ry)yf(xy)dy=1πsin(ry)yf(xy)dy \begin{align} \frac{1}{\pi}\int _{-\infty} ^{\infty}\frac{\sin r(x-y)}{(x-y)}f(y)dy &= -\frac{1}{\pi}\int _{\infty} ^{-\infty}\frac{\sin (ry)}{y}f(x-y)dy \nonumber \\ &= \frac{1}{\pi}\int _{-\infty} ^{\infty}\frac{\sin (ry)}{y}f(x-y)dy \label{eq1} \end{align}

It is well known that the ideal integral of the sinc function is as follows:

0sinxxdx=0sin(ax)xdx=π2=0sinxxdx=0sin(ax)xdx \begin{equation} \int_{-\infty}^{0} \frac{\sin x}{x}dx=\int_{-\infty}^{0} \frac{\sin (ax)}{x}dx=\frac{\pi}{2}=\int_{0}^{\infty} \frac{\sin x}{x}dx=\int_{0}^{\infty} \frac{\sin (ax)}{x}dx \label{eq2} \end{equation}

Using the two equations (1)(1) and (2)(2), we can obtain the following equation:

12πrreiξxf^(ξ)dξ12[f(x+)+f(x)]= 1πsin(ry)yf(xy)dy1π0sin(ry)ydyf(x+)1π0sin(ry)ydyf(x)= 1π0sin(ry)y[f(xy)f(x+)]dy+1π0sin(ry)y[f(xy)f(x)]dy \begin{align} &\frac{1}{2\pi}\int_{-r}^{r}e^{i\xi x}\hat{f}(\xi)d\xi-\frac{1}{2}\big[ f(x+)+f(x-)\big] \nonumber \\ =&\ \frac{1}{\pi}\int _{-\infty} ^{\infty}\frac{\sin (ry)}{y}f(x-y)dy -\frac{1}{\pi}\int_{-\infty}^{0}\frac{\sin (ry)}{y}dyf(x+)-\frac{1}{\pi}\int_{0}^{\infty}\frac{\sin (ry)}{y}dyf(x-) \nonumber \\ =&\ \frac{1}{\pi}\int _{-\infty} ^{0}\frac{\sin (ry)}{y}\big[f(x-y)-f(x+) \big]dy +\frac{1}{\pi}\int _{0} ^{\infty}\frac{\sin (ry)}{y}\big[f(x-y)-f(x-) \big]dy \label{eq3} \end{align}

Since the solution method is the same, it suffices to consider only the second term of the last line of the above equation. Let’s divide the integration interval as follows for K1K\ge 1.

1π0sin(ry)y[f(xy)f(x)]dy=1π0Ksin(ry)y[f(xy)f(x)]dy+1πKsin(ry)y[f(xy)f(x)]dy \begin{align} &\frac{1}{\pi}\int _{0} ^{\infty}\frac{\sin (ry)}{y}\big[f(x-y)-f(x-) \big]dy \nonumber \\ = &\frac{1}{\pi}\int _{0} ^{K}\frac{\sin (ry)}{y}\big[f(x-y)-f(x-) \big]dy+\frac{1}{\pi}\int _{K} ^{\infty}\frac{\sin (ry)}{y}\big[f(x-y)-f(x-) \big]dy \label{eq4} \end{align}

Let’s look at the second term of (4)(4) in two parts. Since x1x \ge 1 with respect to sinxx1\left| \frac{\sin x}{x} \right| \le 1, we obtain the following equation:

1πKsin(ry)yf(xy)dy1πKsin(ry)yf(xy)dy1πKf(xy)dy \begin{align*} \left| \frac{1}{\pi}\int _{K} ^{\infty}\frac{\sin (ry)}{y}f(x-y)dy\right| &\le \frac{1}{\pi}\int _{K} ^{\infty}\left|\frac{\sin (ry)}{y}f(x-y)\right|dy \\ &\le \frac{1}{\pi}\int _{K} ^{\infty}\left|f(x-y)\right|dy \end{align*}

Since by assumption ff is integrable, limxf(x)\lim \limits_{x \to \infty}f(x) does not diverge. Thus, the above integration approaches 00 when KK \to \infty. The remaining part can be calculated as follows:

1πKsin(ry)yf(x)dy=f(x)πKsin(ry)ydy=f(x)πrKsin(y)ydy \begin{align*} \frac{1}{\pi}\int _{K} ^{\infty}\frac{\sin (ry)}{y}f(x-)dy &= \frac{f(x-)}{\pi}\int _{K} ^{\infty}\frac{\sin (ry)}{y}dy \\ &= \frac{f(x-)}{\pi}\int _{rK} ^{\infty}\frac{\sin (y)}{y}dy \end{align*}

Since sinxx\frac{\sin x}{x} is also integrable, similar to above, irrespective of the value of rr, the integration value approaches 00 when KK \to \infty. Therefore, by assuming KK is adequately large, we can make the second term of (4)(4) as small as we want. Now, it’s time to calculate the first term of (3)(3), but first, let’s assume the function gg as follows.

g(y)={f(xy)f(x)y,0<y<K0,otherwise g(y) =\begin{cases} \frac{f(x-y)-f(x-)}{y}, &0<y<K \\ 0, & \text{otherwise}\end{cases}

Then, we obtain the following equation:

eiryeiry2ig(y)dy=12i[g(y)eirydyg(y)eirydy]=12i[g^(r)g^(r)] \begin{align*} \int \frac{e^{iry}-e^{-iry}}{2i}g(y)dy &=\frac{1}{2i}\left[\int g(y)e^{iry}dy-\int g(y)e^{-iry}dy \right] \\ &= \frac{1}{2i}\big[ \hat{g}(r)-\hat{g}(-r) \big] \end{align*}

Assuming ff is a smooth function, gg is smooth everywhere except at y=0y=0. And the function value g(y)g(y) approaches f(x)f^{\prime}(x-) as yy decreases close to 00, so gg is bounded at [0,K][0,K] and integrable. Therefore, by the Riemann-Lebesgue lemma, limrg^(±r)=0\lim \limits_{r\to\infty}\hat{g}(\pm r)=0. Combining all, we obtain the following equation for the second term of (3)(3).

limr1π0sin(ry)y[f(xy)f(x)]dy=0 \lim \limits_{r\to \infty}\frac{1}{\pi}\int _{0} ^{\infty}\frac{\sin (ry)}{y}\big[f(x-y)-f(x-) \big]dy =0

Similarly, for the first term of (3)(3), we obtain the following equation:

limr1π0sin(ry)y[f(xy)f(x)]dy=0 \lim \limits_{r\to \infty}\frac{1}{\pi}\int _{-\infty} ^{0}\frac{\sin (ry)}{y}\big[f(x-y)-f(x-) \big]dy =0

Therefore,

limr12πrreiξxf^(ξ)dξ12[f(x+)+f(x)]=0 \lim \limits_{r \to \infty} \frac{1}{2\pi}\int_{-r}^{r}e^{i\xi x}\hat{f}(\xi)d\xi-\frac{1}{2}\big[ f(x+)+f(x-)\big]=0