logo

Integration of Vector-Valued Functions 📂Vector Analysis

Integration of Vector-Valued Functions

Definition1

Let f1f_{1}, f2f_{2}, \dots, fkf_{k} be functions taking real values on the interval [a,b][a,b]. And suppose f:[a,b]Rk\mathbf{f} : [a,b] \to \mathbb{R}^{k} is defined as follows.

f(x)=(f1(x),,fk(x)),x[a,b] \mathbf{f}(x)=\left( f_{1}(x),\dots,f_{k}(x) \right),\quad x\in [a,b]

If each fkf_{k} is integrable on the interval [a,b][a,b], then the integral of f\mathbf{f} is defined as follows.

abfdx=(abf1dx,,abfkdx) \int _{a} ^{b} \mathbf{f}dx = \left( \int _{a} ^{b}f_{1} dx, \dots, \int _{a} ^{b}f_{k} dx \right)

Theorem

The results established for functions previously satisfying f:[a,b]Rf : [a,b]\to \mathbb{R} hold true as they are.

Fundamental Theorem of Calculus Part 2

Suppose for a vector-valued function f,F:[a,b]Rk\mathbf{f}, \mathbf{F} : [a,b] \to \mathbb{R}^{k}, f\mathbf{f} is integrable and F=f\mathbf{F}^{\prime}=\mathbf{f} holds. Then the following equation applies.

abf(t)dt=F(b)F(a) \int _{a} ^{b} \mathbf{f}(t)dt = \mathbf{F}(b)-\mathbf{F}(a)

The Absolute Value of an Integral is Less Than the Integral of the Absolute Value

abfdxabfdx \begin{equation} \left| \int _{a} ^{b} \mathbf{f}dx \right| \le \int _{a} ^{b} \left| \mathbf{f} \right| dx \label{eq1} \end{equation}

Proof

If f=(f1,,fk)\mathbf{f}=\left( f_{1},\dots,f_{k} \right), then the following is true.

f=(f12++fk2)1/2 \left| \mathbf{f} \right| =\left( f_{1}^{2}+\cdots +f_{k}^{2} \right)^{1/2}

Since integration is linear, and the product of functions preserves integrability, each fi2f_{i}^{2} and their sum is also integrable. Also, since x2x^{2} is continuous on the compact set [a,b][a,b], x1/2x^{1/2} is continuous too, and being continuous, it’s integrable. The composition of continuous functions preserves integrability, thus the following holds. f\left| \mathbf{f} \right| is integrable.

To demonstrate (eq1)\eqref{eq1}, let’s assume the following.

y=(y1,,yk)andyi=fidx \mathbf{y} = \left( y_{1},\dots,y_{k} \right) \quad \text{and} \quad y_{i}=\int f_{i}dx

Then, the following is true.

y=(y1,,yk)=(fidx,,fkdx)=fdx \mathbf{y} = \left( y_{1},\dots,y_{k} \right) = \left( \int f_{i}dx, \dots, \int f_{k}dx \right) = \int \mathbf{f}dx

Moreover, we obtain the following.

y2=i=1kyi2=i=1kyifidx=(i=1kyifi)dx \left| \mathbf{y} \right| ^{2} = \sum \limits _{i=1} ^{k}y_{i}^{2} = \sum \limits _{i=1} ^{k}y_{i}\int f_{i}dx = \int \left( \sum \limits _{i=1} ^{k}y_{i}f_{i} \right) dx

Then, by the Cauchy-Schwarz Inequality, the following applies.

i=1nyifi(t)yf(t),atb \sum \limits _{i=1} ^{n} y_{i}f_{i}(t) \le \left| \mathbf{y} \right| \left| \mathbf{f}(t) \right|, \quad a\le t \le b

Thus, when y0\left| \mathbf{y} \right| \ne 0, the following is true.

y2yfdx    yfdx    fdxfdx \begin{align*} && \left| \mathbf{y} \right| ^{2}\le \int \left| \mathbf{y} \right| \left| \mathbf{f} \right| dx \\ \implies && \left| \mathbf{y} \right| \le \int \left| \mathbf{f} \right|dx \\ \implies && \left| \int \mathbf{f}dx \right| \le \int \left| \mathbf{f} \right|dx \end{align*}

Of course, y=0\left| \mathbf{y} \right| =0 is trivially true.


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p135-136 ↩︎