logo

Magnetic Fields Produced by Magnetic Dipoles 📂Electrodynamics

Magnetic Fields Produced by Magnetic Dipoles

Description

596C5A923.jpg

The vector potential due to a magnetic dipole $\mathbf{m}$ is as given in magnetic dipole moment.

$$ \mathbf{A}_{\text{dip}}(\mathbf{r}) = \dfrac{\mu_{0}}{4 \pi} \dfrac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2} = \dfrac{\mu_{0}}{4 \pi} \dfrac{m\sin\theta}{r^{2}} \hat{\boldsymbol{\phi}} $$

Now, let $\mathbf{m}$ be located at the origin and parallel to the $z$ axis, as shown in the figure above. Since the magnetic field is the curl of the vector potential, in spherical coordinates, it is as follows.

$$ \begin{align*} \mathbf{B} = \nabla \times \mathbf{A}_{\text{dip}} &= \frac{1}{r\sin\theta} \left[\frac{\partial (\sin\theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi} \right]\mathbf{\hat{\mathbf{r}}} + \frac{1}{r}\left[\frac{1}{\sin\theta} \frac{\partial A_{r}}{\partial \phi} - \frac{\partial (rA_\phi)}{\partial r} \right] \boldsymbol{\hat{\boldsymbol{\theta}}} \\[1em] &\quad+ \frac{1}{r} \left[\frac{\partial (rA_\theta)}{\partial r}-\frac{\partial A_{r}}{\partial \theta} \right]\boldsymbol{\hat \phi} \end{align*} $$

Calculating each component gives the following. Since the $\mathbf{A}_{\text{dip}}$ component has only $A_{\phi}$,

$$ \begin{align*} B_{r} &= \frac{1}{r\sin\theta} \frac{\partial (\sin\theta A_\phi)}{\partial \theta} = \frac{1}{r\sin\theta}\frac{\partial }{\partial \theta}\left( \dfrac{\mu_{0}}{4 \pi} \dfrac{m\sin^{2}\theta}{r^{2}} \right) = \dfrac{\mu_{0}}{4 \pi} \dfrac{2m\cos\theta}{r^{3}} \\[1em] B_{\theta} &= - \frac{1}{r} \frac{\partial (rA_\phi)}{\partial r} = - \frac{1}{r} \frac{\partial }{\partial r} \left( \dfrac{\mu_{0}}{4 \pi} \dfrac{m\sin\theta}{r} \right) = \dfrac{\mu_{0}}{4 \pi} \dfrac{m\sin\theta}{r^{3}} \\[1em] B_{\phi} &= 0 \end{align*} $$

Therefore, the magnetic field created by the magnetic dipole is as follows.

$$ \begin{equation} \mathbf{B}_{\text{dip}} (r,\theta)=\frac{\mu_{0} }{4 \pi }\frac{m}{r^3}(2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}}) \end{equation} $$

Interestingly, it is exactly the same formula as the electric field created by an electric dipole.

Formula

The formula above can be changed to be independent of the coordinate system as follows.

$$ \mathbf{B}_{\text{dip}}(\mathbf{r}) = \frac{\mu_{0}}{4 \pi}\frac{1}{r^3}[3 (\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \mathbf{m}] $$

Derivation

First, if we express the unit vectors of spherical coordinates in Cartesian coordinates, it is as follows.

$$ \begin{align*} \hat{\mathbf{r}} =&\ \cos\phi \sin\theta \hat{\mathbf{x}} + \sin\phi \sin\theta\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}} \\ \hat{\boldsymbol{\theta}} =&\ \cos\phi \cos\theta \hat{\mathbf{x}} + \sin\phi \cos\theta\hat{\mathbf{y}} - \sin\theta\hat{\mathbf{z}} \end{align*} $$

Therefore, calculating the expression inside the brackets of $(1)$ gives the following.

$$ \begin{align*} & 2\cos\theta \hat{\mathbf{r}} + \sin \theta \hat{\boldsymbol{\theta}} \\ =&\ 2 \cos\phi \sin\theta \cos\theta \hat{\mathbf{x}} + 2 \sin\phi \sin\theta \cos\theta \hat{\mathbf{y}} + 2 \cos^2 \theta \hat{\mathbf{z}} \\ & + \cos\phi \sin\theta \cos\theta \hat{\mathbf{x}} + \sin\phi \cos\theta \sin\theta \hat{\mathbf{y}} -\sin^2\theta \hat{\mathbf{z}} \\ =&\ 3\cos\phi \sin\theta \cos\theta \hat{\mathbf{x}} + 3 \sin\phi \sin\theta \cos\theta \hat{\mathbf{y}} + 3 \cos^2 \theta \hat{\mathbf{z}} -(\sin^2\theta + \cos^2\theta)\hat{\mathbf{z}} \\ =&\ 3 \cos\theta (\cos\phi \sin\theta \hat{\mathbf{x}} + \sin\phi \sin\theta\hat{\mathbf{y}} + \cos\theta\hat{\mathbf{z}}) - \hat{\mathbf{z}} \\ =&\ 3 (\hat{\mathbf{m}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \hat{\mathbf{z}} \end{align*} $$

The last equality holds because of $\cos\theta = \hat{\mathbf{m}} \cdot \hat{\mathbf{r}}$. Now, the following result is obtained.

$$ \begin{align*} \mathbf{B}_{\text{dip}}(r,\theta) &=\frac{\mu_{0} }{4 \pi }\frac{m}{r^3}(2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}}) \\[1em] &= \frac{\mu_{0} }{4 \pi }\frac{m}{r^3}[3 (\hat{\mathbf{m}}\cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \hat{\mathbf{z}}] \\[1em] &= \frac{\mu_{0} }{4 \pi }\frac{1}{r^3}[3 (\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - m \hat{\mathbf{z}}] \\[1em] &= \frac{\mu_{0}}{4 \pi }\frac{1}{r^3}[3 (\mathbf{m} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \mathbf{m}] \\[1em] &= \mathbf{B}_{\text{dip}}(\mathbf{r})) \end{align*} $$