logo

Angular Momentum Operator in Spherical Coordinates 📂Quantum Mechanics

Angular Momentum Operator in Spherical Coordinates

Formula

The angular momentum operator is expressed in spherical coordinates as follows.

Lx=i(sinϕθ+cosϕcotθϕ)Ly=i(cosϕθsinϕcotθϕ)Lz=iϕ \begin{align*} L_{x} &= \i\hbar \left(\sin\phi\dfrac{\partial }{\partial \theta} + \cos\phi \cot\theta \dfrac{\partial }{\partial \phi}\right) \\ L_{y} &= -\i\hbar \left( \cos\phi \dfrac{\partial }{\partial \theta} - \sin\phi \cot\theta \dfrac{\partial }{\partial \phi}\right) \\ L_{z} &= -\i\hbar \dfrac{\partial }{\partial \phi} \end{align*}

Derivation

The definition of the angular momentum operator is as follows.

L=r×P=i(r×) L = \mathbf{r} \times P = - \i\hbar (\mathbf{r} \times \nabla)

At this time, r=(X,Y,Z)\mathbf{r} = (X, Y, Z) is the position operator, PP is the momentum operator, \nabla is the del operator. The del operator in spherical coordinates is as follows.

=r^r+θ^1rθ+ϕ^1rsinθϕ \nabla = \widehat{\mathbf{r}}\dfrac{\partial}{\partial r} + \widehat{\boldsymbol{\theta}}\dfrac{1}{r}\dfrac{\partial}{\partial \theta} + \widehat{\boldsymbol{\phi}}\dfrac{1}{r\sin\theta}\dfrac{\partial}{\partial \phi}

Since r=rr^\mathbf{r} = r \widehat{\mathbf{r}}, LL is as follows.

L=i(rr^×)=i(r^×r^rr+r^×θ^θ+r^×ϕ^1sinθϕ)=i(ϕ^θθ^1sinθϕ) \begin{align*} L &= -\i\hbar (r \widehat{\mathbf{r}} \times \nabla) \\ &= -\i\hbar \left( \widehat{\mathbf{r}} \times \widehat{\mathbf{r}} r \dfrac{\partial}{\partial r} + \widehat{\mathbf{r}} \times \widehat{\boldsymbol{\theta}}\dfrac{\partial}{\partial \theta} + \widehat{\mathbf{r}} \times \widehat{\boldsymbol{\phi}} \dfrac{1}{\sin\theta}\dfrac{\partial}{\partial \phi} \right) \\ &= -\i\hbar \left( \widehat{\boldsymbol{\phi}} \dfrac{\partial}{\partial \theta} - \widehat{\boldsymbol{\theta}} \dfrac{1}{\sin\theta}\dfrac{\partial}{\partial \phi} \right) \\ \end{align*}

At this time, the two unit vectors can be represented as follows in Cartesian coordinates.

θ^=cosϕcosθx^+sinϕcosθy^sinθz^ϕ^=sinϕx^+cosϕy^ \begin{align*} \widehat{\boldsymbol{\theta}} &= \cos\phi \cos\theta \widehat{\mathbf{x}} + \sin\phi \cos\theta \widehat{\mathbf{y}} - \sin\theta\widehat{\mathbf{z}} \\ \widehat{\boldsymbol{\phi}} &= -\sin\phi \widehat{\mathbf{x}} + \cos\phi \widehat{\mathbf{y}} \end{align*}

Therefore, LL is as follows.

L=i[(sinϕx^+cosϕy^)θ(cosϕcosθx^+sinϕcosθy^sinθz^)1sinθϕ]=i[x^(sinϕθcosϕcotθϕ)+y^(cosϕθsinϕcotθϕ)+z^(ϕ)] \begin{align*} L &= -\i\hbar \left[ \left( -\sin\phi \widehat{\mathbf{x}} + \cos\phi \widehat{\mathbf{y}} \right) \dfrac{\partial}{\partial \theta} - \left( \cos\phi \cos\theta \widehat{\mathbf{x}} + \sin\phi \cos\theta \widehat{\mathbf{y}} - \sin\theta\widehat{\mathbf{z}} \right) \dfrac{1}{\sin\theta}\dfrac{\partial}{\partial \phi} \right] \\ &= -\i\hbar \left[ \widehat{\mathbf{x}}\left(-\sin\phi\dfrac{\partial }{\partial \theta} - \cos\phi \cot\theta \dfrac{\partial }{\partial \phi}\right) + \widehat{\mathbf{y}}\left( \cos\phi \dfrac{\partial }{\partial \theta} - \sin\phi \cot\theta \dfrac{\partial }{\partial \phi}\right) + \widehat{\mathbf{z}}\left( \dfrac{\partial }{\partial \phi} \right) \right]\\ \end{align*}

Therefore, each component is as follows.

Lx=i(sinϕθ+cosϕcotθϕ)Ly=i(cosϕθsinϕcotθϕ)Lz=iϕ \begin{align*} L_{x} &= \i\hbar \left(\sin\phi\dfrac{\partial }{\partial \theta} + \cos\phi \cot\theta \dfrac{\partial }{\partial \phi}\right) \\ L_{y} &= -\i\hbar \left( \cos\phi \dfrac{\partial }{\partial \theta} - \sin\phi \cot\theta \dfrac{\partial }{\partial \phi}\right) \\ L_{z} &= -\i\hbar \dfrac{\partial }{\partial \phi} \end{align*}