logo

Proof of the Cantor-Bernstein Theorem 📂Set Theory

Proof of the Cantor-Bernstein Theorem

Theorem 1

A set AA, BB is equivalent to a subset of BB being equivalent to a subset of AA if and only if AA and BB are equivalent.


Proof

Strategy: We attempt to express taking function ff on xx kk times as fk(x)f^{k}(x). For all kNk \in \mathbb{N}, it should be representable as fk(x)=f(fk1(x))f^{k}(x) = f \left( f^{k-1}(x) \right). From this perspective, f0f^{0} can be considered an identity function, which is a function that has not taken ff at all.

First, for the subset BB of set AA, we want to show that if there exists an injection f:ABf: A \to B, then there is also a bijection h:ABh : A \to B. If B=AB=A, any injection ff would have an identity function h:=f0h:=f^{0}, hence there’s nothing more to prove, so we only consider when BAB \subsetneq A.


Part 1. If nmn \ne m, then fn(AB)fm(AB)=f^{n}(A \setminus B) \cap f^{m}(A \setminus B) = \emptyset

Assume for m<nm < n, fn(AB)fm(AB)f^{n}(A \setminus B) \cap f^{m}(A \setminus B) \ne \emptyset holds. This implies the existence of some x1,x2(AB)x_{1}, x_{2} \in (A \setminus B) satisfying fn(x1)=fm(x2)f^{n}(x_{1}) = f^{m}(x_{2}). Hence, fnm(x1)=fmm(x2)=f0(x2)=x2 \begin{align*} f^{n-m}(x_{1}) =& f^{m-m}(x_{2}) \\ =& f^{0}(x_{2}) \\ =& x_{2} \end{align*} Where f0(x2)Bf^{0}(x_{2}) \in B means x2Bx_{2} \in B. However, this contradicts x2(AB)x_{2} \in (A \setminus B). Similarly, it can be shown that when m>nm > n, fn(AB)fm(AB)f^{n}(A \setminus B) \cap f^{m}(A \setminus B) \ne \emptyset holds.


Part 2. h(A)=Bh(A) = B

Define set CC as follows. C:=n0fn(AB)h(z):={f(z),zCz,zAC \begin{align*} C:=& \bigcup_{n \ge 0} f^{n} (A \setminus B) \\ h(z):=& \begin{cases} f(z) & , z \in C \\ z &,z \in A\setminus C\end{cases} \end{align*} Defining function hh for CC and zAz \in A as above, we find ABCA \setminus B \subset C and, f(C)Cf (C) \subset C. By the property of the image of a function over a union, h(A)=(AC)f(C)=[An0fn(AB)]f(n0fn(AB))=[A(n0fn(AB))c]n1fn(AB)=[An1fn(AB)][(n0fn(AB))cn1fn(AB)]=A[n0fn(AB)(n1fn(AB))c]c=A[f0(AB)]c=A(AB)c=A(AB)=B \begin{align*} h(A) =& (A\setminus C) \cup f (C) \\ =& \left[ A \setminus \bigcup_{n \ge 0} f^{n} (A \setminus B) \right] \cup f \left( \bigcup_{n \ge 0} f^{n} (A \setminus B) \right) \\ =& \left[ A \cap \left( \bigcup_{n \ge 0} f^{n} (A \setminus B) \right)^{c} \right] \cup \bigcup_{n \ge 1} f^{n} (A \setminus B) \\ =& \left[ A \cup \bigcup_{n \ge 1} f^{n} (A \setminus B) \right] \cap \left[ \left( \bigcup_{n \ge 0} f^{n} (A \setminus B) \right)^{c} \cup \bigcup_{n \ge 1} f^{n} (A \setminus B) \right] \\ =& A \cap \left[ \bigcup_{n \ge 0} f^{n} (A \setminus B) \cap \left( \bigcup_{n \ge 1} f^{n} (A \setminus B) \right)^{c} \right]^{c} \\ =& A \cap \left[ f^{0}(A \setminus B) \right]^{c} \\ =& A \cap ( A \setminus B)^{c} \\ =& A \setminus (A \setminus B) \\ =& B \end{align*} That is, h(A)=Bh(A) = B, and hh is onto. Since ff is an injection, hh is also an injection, thus it’s bijective.


Part 3. hh is bijective

A0AB0B A_{0} \subset A \\ B_{0} \subset B According to the theorem’s assumptions, if there are two bijective functions f0:AB0f_{0} : A \to B_{0} and g0:BA0g_{0} : B \to A_{0}, then the function ff defined as per f(x)=g0(f0(x))f(x) = g_{0} \left( f_{0} (x) \right) is an injection. According to Part 1 and 2, there is a bijective function h:AA0h : A \to A_{0}. Therefore, g01h:ABg_{0}^{-1} \circ h : A \to B is bijective. Hence, AA and BB are equivalent.


  1. 이흥천 역, You-Feng Lin. (2011). 집합론(Set Theory: An Intuitive Approach): p245. ↩︎