logo

Strong Local Lipschitz Condition

Strong Local Lipschitz Condition

Definition1

If there exists a locally finite open cover {Uj}\left\{ U_{j} \right\} of δ>0\delta \gt 0, M>0M \gt 0, and bdryΩ\mathrm{bdry}\Omega, such that for each jj, there is a real-valued function fjf_{j} with n1n-1 variables satisfying (i)\text{(i)} ~ (iv)\text{(iv)}, then the open set ΩRn\Omega \subset \mathbb{R}^n satisfies the strong local Lipschitz condition.

For all pairs x,yx,y\in Ω<δ\Omega_{\lt \delta} that satisfy xy<δ|x-y| \lt \delta, there exists jj that satisfies the condition below.

x,yVj=Uj>δ={zUj:dist(z, bdryUj)>δ} x,y\in V_{j}=U_{j\gt\delta}=\left\{ z\in U_{j} : \mathrm{dist}(z,\ \mathrm{bdry}U_{j}) \gt \delta\right\}

(ii)\text{(ii)} Each function fjf_{j} satisfies the Lipschitz condition with Lipschitz constant MM. That is, if

f(ξ)f(ρ)Mξρ |f(\xi)-f(\rho)|\le M|\xi-\rho|

(iii)\text{(iii)} For some orthogonal coordinate system (ζj,1, , ζj,n)Uj(\zeta_{j,1},\ \cdots,\ \zeta_{j,n})\in U_{j}, ΩUj\Omega \cap U_{j} is represented by the following inequality:

ζj,n>fj(ζj,1, , ζj,n1) \zeta_{j,n} \gt f_{j}(\zeta_{j,1},\ \cdots,\ \zeta_{j,n-1})

(iv)\text{(iv)} There exists some positive number RR, such that the intersection of all collections of R+1R+1 of the sets UjU_{j} is empty.


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p83 ↩︎