logo

Radon-Nikodym Theorem Proof 📂Measure Theory

Radon-Nikodym Theorem Proof

Theorem 1

If two sigma-finite measure ν\nu, μ\mu in a measure space (Ω,F)( \Omega , \mathcal{F} ) satisfy νμ\nu \ll \mu, then for all AFA \in \mathcal{F}, there exists a unique F\mathcal{F}-measurable function hh satisfying h0h \ge 0 almost everywhere according to μ\mu and ν(A)=Ahdμ \nu (A) = \int_{A} h d \mu .


  • That hh is almost everywhere according to μ\mu means μ(h1(,0))=0\mu \left( h^{-1} ( -\infty , 0 ) \right) = 0, similar to almost everywhere. ν(A)μ(A)\nu (A) \ll \mu (A) signifies that ν\nu is absolutely continuous with respect to μ\mu, and for all AFA \in \mathcal{F}, the following holds: μ(A)=0    ν(A)=0\mu (A) =0 \implies \nu (A) =0

Statement

According to the properties of the Lebesgue integral, ν(A)=A1Adν\displaystyle \nu (A) = \int_{A} \mathbb{1}_{A} d \nu , but bringing another measure μ\mu also satisfies ν(A)=Ahdμ \nu (A) = \int_{A} h d \mu through a uniquely existing intermediary hh, and it is also looked for what exactly it is. This theorem’s hh is called the Radon-Nikodym derivative. The Radon-Nikodym theorem immediately assures the existence of conditional expectations in probability theory, and its importance is immense.

Proof

Assume first that μ(Ω)=ν(Ω)<\mu ( \Omega ) = \nu ( \Omega ) < \infty, meaning ν\nu and μ\mu are finite measures.


Part 1. Ωgdμ=Ωghμdφ\displaystyle \int_{\Omega} g d \mu = \int_{\Omega} g h_{\mu} d \varphi

Suppose the two finite measures μ\mu, φ\varphi in (Ω,F)( \Omega , \mathcal{F} ) satisfy 0μφ0 \le \mu \le \varphi. To compute Ωgdμ\displaystyle \int_{\Omega} g d \mu for any F\mathcal{F}-measurable function g0g \ge 0, define the simple function gng_{n} with a finite number of values nn and the smallest metric with gg as follows. gn:=k=1nak1Ak=arg mingG g_{n} := \sum_{k=1}^{n} a_{k} \mathbb{1}_{A_{k}} = \argmin | g - G | Here, let Qn:={Ak}k=1n\mathcal{Q}_{n} := \left\{ A_{k} \right\}_{k=1}^{n} be the partition for all nn, and say Qn+1\mathcal{Q}_{n+1} is the refinement of Qn\mathcal{Q}_{n}. Then, by definition, if gngg_{n} \nearrow g, then Ωgndμ=Ωk=1nak1Akdμ=k=1nakAk1Akdμ=k=1nakμ(Ak)=k=1nakμ(Ak)φ(Ak)φ(Ak)=k=1nakμ(Ak)φ(Ak)Ak1Akdφ=k=1nAkak1Akμ(Ak)φ(Ak)dφ=Ωgnμφdφ \begin{align*} \int_{\Omega} g_{n} d \mu =& \int_{\Omega} \sum_{k=1}^{n} a_{k} \mathbb{1}_{A_{k}} d \mu \\ =& \sum_{k=1}^{n} a_{k} \int_{A_{k}} \mathbb{1}_{A_{k}} d \mu \\ =& \sum_{k=1}^{n} a_{k} \mu (A_{k}) \\ =& \sum_{k=1}^{n} a_{k} {{ \mu (A_{k}) } \over { \varphi (A_{k}) }} \varphi (A_{k}) \\ =& \sum_{k=1}^{n} a_{k} {{ \mu (A_{k}) } \over { \varphi (A_{k}) }} \int_{A_{k}} \mathbb{1}_{A_{k}} d \varphi \\ =& \sum_{k=1}^{n} \int_{A_{k}} a_{k} \mathbb{1}_{A_{k}} {{ \mu (A_{k}) } \over { \varphi (A_{k}) }} d \varphi \\ =& \int_{\Omega} g_{n} {{ \mu } \over { \varphi }} d \varphi \end{align*}

Monotone convergence theorem: If a sequence of non-negative measurable functions {fn}\left\{ f_{n} \right\} satisfies fnff_{n} \nearrow f, then limnEfndm=Efdm \lim_{n \to \infty} \int_{E} f_{n} dm = \int_{E} f dm

Radon-Nikodym derivative: If for all nNn \in \mathbb{N}, Qn+1\mathcal{Q}_{n+1} is a refinement of Qn\mathcal{Q}_{n}, then limnhQn=limnνμ=dνdμ \lim_{n \to \infty} h_{\mathcal{Q}_{n}} = \lim_{n \to \infty} {{\nu} \over {\mu}} = {{d \nu } \over {d \mu }}

Then, by the properties of the monotone convergence theorem and the Radon-Nikodym derivative, Ωgdμ=limnΩgndμ=limnΩgnμφdφ=Ωgdμdφdφ \begin{align*} \int_{\Omega} g d \mu =& \lim_{n \to \infty} \int_{\Omega} g_{n} d \mu \\ =& \lim_{n \to \infty} \int_{\Omega} g_{n} {{ \mu } \over { \varphi }} d \varphi \\ =& \int_{\Omega} g {{d \mu } \over {d \varphi }} d \varphi \end{align*}


Part 2. Existence of hh

If it is φ=ν+μ\varphi = \nu + \mu, obviously 0νφ0 \le \nu \le \varphi and therefore 0μφ0 \le \mu \le \varphi, the condition of Part 1 that φ\varphi is greater than both ν\nu and μ\mu is met, the Radon-Nikodym derivative hμ=dμdφ\displaystyle h_{\mu} = {{ d \mu } \over { d \varphi }}, hν=dνdφ\displaystyle h_{\nu} = {{ d \nu } \over { d \varphi }} can be well defined. Consider two sets from F\mathcal{F} F:={ωΩ:hμ(ω)>0}G:={ωΩ:hμ(ω)=0} \begin{align*} F &:= \left\{ \omega \in \Omega : h_{\mu} (\omega) > 0 \right\} \\ G &:= \left\{ \omega \in \Omega : h_{\mu} (\omega) = 0 \right\} \end{align*} For the subset FF of AFA \subset F, if defined as h:=1Ahνhμ\displaystyle h := \mathbb{1}_{A} {{ h_{\nu} } \over { h_{\mu} }}, then by Part 1, ν(A)=A1Adν=A1Adνdφdφ=A1Ahνhμhμdφ=A1Ahνhμhμdφ=Ahhμdφ=Ahdμ \begin{align*} \nu (A) =& \int_{A} \mathbb{1}_{A} d \nu \\ =& \int_{A} \mathbb{1}_{A} {{ d \nu } \over { d \varphi }} d \varphi \\ =& \int_{A} \mathbb{1}_{A} h_{\nu} {{ h_{\mu} } \over { h_{\mu} }} d \varphi \\ =& \int_{A} \mathbb{1}_{A} {{ h_{\nu} } \over { h_{\mu} }} h_{\mu} d \varphi \\ =& \int_{A} h h_{\mu} d \varphi \\ =& \int_{A} h d \mu \end{align*} and by the definition of GG, if μ(G)=Ghμdφ=0\displaystyle \mu (G) = \int_{G} h_{\mu} d \varphi = 0, then νμ\nu \ll \mu from the premise, so μ(G)=0    ν(G)=0\mu (G) = 0 \implies \nu (G) = 0. Therefore, hh satisfies ν(A)=Ahdμ \nu (A) = \int_{A} h d \mu.


Part 3. Uniqueness of hh

Afdm=0    f=0 a.e.\int_{A} f dm = 0 \iff f = 0 \text{ a.e.}

If f=gf = g and f=hf = h exist satisfying ν(A)=Afdμ\nu (A) = \int_{A} f d \mu for AFA \in \mathcal{F}, 0=ν(A)ν(A)=AhdμAgdμ=A(hg)dμ \begin{align*} 0 =& \nu (A) - \nu (A) \\ =& \int_{A} h d \mu - \int_{A} g d \mu \\ =& \int_{A} (h - g ) d \mu \end{align*} then almost everywhere h=gh = g.


Part 4. Generalization to Sigma-Finite Measures

Now, assume that ν\nu and μ\mu are sigma-finite measures. AkFν(Ak)<μ(Ak)<ij    AiAj=X=kNAk A_{k} \in \mathcal{F} \\ \nu (A_{k}) < \infty \\ \mu (A_{k}) < \infty \\ i \ne j \implies A_{i} \cap A_{j} = \emptyset \\ X = \bigcup_{k \in \mathbb{N}} A_{k} Fix sequences of sets {Ak}kN\left\{ A_{k} \right\}_{k \in \mathbb{N}} and EFE \in \mathcal{F} satisfying the above conditions and redefine finite measures over EAkE \cap A_{k} accordingly. νk(E):=ν(EAk)μk(E):=μ(EAk) \nu_{k} (E) := \nu ( E \cap A_{k} ) \\ \mu_{k} (E) := \mu ( E \cap A_{k} ) Then, according to Parts 1-3, there exist hkh_{k} for all kNk \in \mathbb{N} satisfying the following. νk(E)=Ehkdμk \nu_{k} (E) = \int_{E} h_{k} d \mu_{k} By the definitions of νk\nu_{k}, μk\mu_{k}, DCP( ) is guaranteed, and for all kNk \in \mathbb{N}, hk(Akc)=0h_{k} (A_{k}^{c}) = 0 is assured. Accordingly, if defining h:=kNhk\displaystyle h := \sum_{k \in \mathbb{N}} h_{k} then ν(E)=kNνk(E)=kNEhkdμk=Ehdμ \begin{align*} \nu (E) =& \sum_{k \in \mathbb{N}} \nu_{k} (E) \\ =& \sum_{k \in \mathbb{N}} \int_{E} h_{k} d \mu_{k} \\ =& \int_{E} h d \mu \end{align*}


  1. Bartle. (1995). The Elements of Integration and Lebesgue Measure: p85. ↩︎