logo

Joint and Marginal Distributions Defined by Measure Theory 📂Probability Theory

Joint and Marginal Distributions Defined by Measure Theory

Definition 1

Let’s assume that a probability space (Ω,F,P)( \Omega , \mathcal{F} , P) is given.

  1. Joint Distribution: If there are two random variables XX and YY defined in (Ω,F,P)( \Omega , \mathcal{F} , P), the distribution of the random vector (X,Y):ΩR2(X,Y) : \Omega \to \mathbb{R}^2 for a Borel set BB(R2)B \subset \mathcal{B} \left( \mathbb{R}^2 \right) is defined as P(X,Y)(B):=P((X,Y)B)=Bf(X,Y)(x,y)dm2(x,y) \begin{align*} P_{(X,Y)} (B) :=& P \left( (X,Y) \in B \right) \\ =& \int_{B} f_{(X,Y)} (x,y) d m_{2} (x,y) \end{align*} and if there exists f(X,Y)f_{(X,Y)} that satisfies this, XX and YY are said to have a joint density.
  2. Marginal Distribution: For a Borel set ARA \subset \mathbb{R}, the following is referred to as the marginal distribution: PX(A):=P(X,Y)(A×R)PY(A):=P(X,Y)(R×A) P_{X} (A) := P_{(X,Y)} ( A \times \mathbb{R} ) \\ P_{Y} (A) := P_{(X,Y)} ( \mathbb{R} \times A )

  • If you haven’t encountered measure theory yet, you can ignore the term “probability space.”

Formulas

Introducing the formula for the sum of two random variables X+YX+Y. Since the sum of random variables directly leads to the concept of the average, its importance is considered to be significant.

  • For XX and YY that have a joint density, marginal density is found as follows. fX(x)=Rf(X,Y)(x,y)dyfY(y)=Rf(X,Y)(x,y)dx f_{X} (x) = \int_{\mathbb{R}} f (X,Y) (x,y) dy \\ f_{Y} (y) = \int_{\mathbb{R}} f (X,Y) (x,y) dx

  • If XX and YY have a joint density fX,Yf_{X,Y}, fX+Y(z)=RfX,Y(x,zx)dx f_{X+Y} (z) = \int_{\mathbb{R}} f_{X,Y} (x , z - x) dx

Derivation

If we define y=x+yy ' = x + y, according to the Fubini’s theorem, fX+Y(z)=P(X+Yz)=PX,Y({(x,y):x+yz})={(x,y):x+yz}fX,Y(x,y)dxdy=RzxfX,Y(x,y)dydx=zRfX,Y(x,yx)dxdy \begin{align*} f_{X+Y} (z) =& P ( X+Y \le z ) \\ =& P_{X,Y} \left( \left\{ (x,y) : x + y \le z \right\} \right) \\ =& \iint_{ \left\{ (x,y) : x + y \le z \right\} } f_{X,Y} (x,y) dx dy \\ =& \int_{\mathbb{R}} \int_{- \infty}^{z-x} f_{X,Y} (x,y) dy dx \\ =& \int_{- \infty}^{z} \int_{\mathbb{R}} f_{X,Y} (x,y ' - x) dx dy ' \end{align*}


  1. Capinski. (1999). Measure, Integral and Probability: p173~174. ↩︎