Solution of Schrödinger Equation for Finite Square Well Potential
📂Quantum Mechanics Solution of Schrödinger Equation for Finite Square Well Potential Overview
Let’s examine how a particle moves when the potential takes the shape of a finite square well as shown in the figure above. The potential U U U is
U ( x ) = { 0 x < − a U 0 − a < x < a 0 a < x
U(x) = \begin{cases} 0 & x<-a
\\ U_{0} & -a < x <a
\\ 0 &a<x \end{cases}
U ( x ) = ⎩ ⎨ ⎧ 0 U 0 0 x < − a − a < x < a a < x
When the potential is U ( x ) U(x) U ( x ) , the time-independent Schrödinger equation is
d 2 u ( x ) d x 2 + 2 m ℏ 2 [ E − U ( x ) ] u ( x ) = 0
\dfrac{d^2 u(x)}{dx^2}+\frac{2m}{\hbar ^2} \Big[ E-U(x) \Big]u(x)=0
d x 2 d 2 u ( x ) + ℏ 2 2 m [ E − U ( x ) ] u ( x ) = 0
Solution E < − U 0 E<-U_{0} E < − U 0 If the energy is less than the potential, then a solution does not exist and therefore does not need to be considered.
■
− U 0 < E < 0 -U_{0} < E < 0 − U 0 < E < 0 Part 2-1. x < − a x<-a x < − a
In this region, the time-independent Schrödinger equation is
d 2 u d x 2 + 2 m ℏ 2 E u = 0
\dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}Eu=0
d x 2 d 2 u + ℏ 2 2 m E u = 0
Since 2 m ℏ 2 E \frac{2m}{\hbar^2}E ℏ 2 2 m E is negative, if we substitute with − κ 2 -\kappa ^2 − κ 2 ,
d 2 u d x 2 − κ 2 u = 0
\dfrac{d^2 u}{dx^2}-\kappa^2u=0
d x 2 d 2 u − κ 2 u = 0
It is a very simple second-order ordinary differential equation. Solving the differential equation, the solution is
u 1 ( x ) = A + e κ x + A − e − κ x
u_{1}(x)=A_{+}e^{\kappa x} + A_{-}e^{-\kappa x}
u 1 ( x ) = A + e κ x + A − e − κ x
Since the wave function must be square-integrable, it is A − = 0 A_{-}=0 A − = 0 .
Part 2-2. − a < x < a -a<x<a − a < x < a
In this region, the time-independent Schrödinger equation is
d 2 u d x 2 + 2 m ℏ 2 ( E + U 0 ) u = 0
\dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}(E+U_{0})u=0
d x 2 d 2 u + ℏ 2 2 m ( E + U 0 ) u = 0
Since E + U 0 > 0 E+U_{0}>0 E + U 0 > 0 , substituting with 2 m ℏ 2 ( E + U 0 ) = k 2 \frac{2m}{\hbar^2}(E+U_{0})=k ^2 ℏ 2 2 m ( E + U 0 ) = k 2 ,
d 2 u d x 2 + k 2 u = 0
\dfrac{d^2 u}{dx^2}+k^2 u=0
d x 2 d 2 u + k 2 u = 0
Solving the equation,
u 2 ( x ) = B + e i k x + B − e − i k x
u_{2}(x) = B_{+}e^{i k x}+B_{-}e^{-ik x}
u 2 ( x ) = B + e ik x + B − e − ik x
Part 2-3. a < x a<x a < x
In this region, the time-independent Schrödinger equation is
d 2 u d x 2 + 2 m ℏ 2 E u = 0
\dfrac{d^2 u}{dx^2}+\frac{2m}{\hbar^2}Eu=0
d x 2 d 2 u + ℏ 2 2 m E u = 0
The solution has the same form as in Part 2-1.
u 3 ( x ) = C + e κ x + C − e − κ x
u_{3}(x)=C_{+}e^{\kappa x} + C_{-}e^{-\kappa x}
u 3 ( x ) = C + e κ x + C − e − κ x
Since the wave function must be square-integrable, it is C + = 0 C_{+}=0 C + = 0 .
Part 2-4. Boundary Conditions
Assuming the wave function is smooth, it is continuous at x = − a x=-a x = − a and x = a x=a x = a , and the derivative (slope) of the wave function is also continuous at x = − a x=-a x = − a and x = a x=a x = a . Therefore,
{ u 1 ( − a ) = u 2 ( − a ) u 2 ( a ) = u 3 ( a ) ⟹ { A + e − κ a + A − e κ a = B + e − i k a + B − e i k a ⋯ ( 1 ) B + e i k a + B − e − i k a = C + e κ a + C − e − κ a ⋯ ( 2 )
\begin{cases}u_{1}(-a)=u_{2}(-a)
\\ u_{2}(a)=u_{3}(a) \end{cases} \quad \implies
\begin{cases} A_{+}e^{-\kappa a}+A_{-}e^{\kappa a} = B_{+}e^{-ik a}+B_{-}e^{ ik a} \quad \cdots (1)
\\ B_{+}e^{ik a}+B_{-}e^{-ik a} = C_{+}e^{\kappa a}+C_{-} e^{-\kappa a} \ \quad \cdots (2) \end{cases}
{ u 1 ( − a ) = u 2 ( − a ) u 2 ( a ) = u 3 ( a ) ⟹ { A + e − κa + A − e κa = B + e − ika + B − e ika ⋯ ( 1 ) B + e ika + B − e − ika = C + e κa + C − e − κa ⋯ ( 2 )
{ u 1 ′ ( − a ) = u 2 ′ ( − a ) u 2 ′ ( a ) = u 3 ′ ( a ) ⟹ { κ A + e − κ a − κ A − e κ a = i k B + e − i k a − i k B − e i k a ⋯ ( 3 ) i k B + e i k a − i k B − e − i k a = κ C + e κ a − κ C − e κ a ⋯ ( 4 )
\begin{cases}u_{1}^{\prime}(-a)=u_{2}^{\prime}(-a)
\\ u_{2}^{\prime}(a)=u_{3}^{\prime}(a) \end{cases} \quad \implies \begin{cases} \kappa A_{+}e^{-\kappa a}-\kappa A_{-}e^{\kappa a} = ik B_{+}e^{-ik a}-ik B_{-}e^{ik a} \quad \cdots (3)
\\ ik B_{+}e^{ik a}-ik B_{-}e^{-ik a} = \kappa C_{+}e^{\kappa a}-\kappa C_{-} e^{\kappa a} \quad \cdots (4) \end{cases}
{ u 1 ′ ( − a ) = u 2 ′ ( − a ) u 2 ′ ( a ) = u 3 ′ ( a ) ⟹ { κ A + e − κa − κ A − e κa = ik B + e − ika − ik B − e ika ⋯ ( 3 ) ik B + e ika − ik B − e − ika = κ C + e κa − κ C − e κa ⋯ ( 4 )
Expressing ( 1 ) (1) ( 1 ) and ( 3 ) (3) ( 3 ) in matrix form,
( e − κ a e i k a i k e − i k a − i k e i k a ) ( A + A − ) = ( e − κ a e κ a κ e − κ a − κ e κ a ) ( B + B − ) ⋯ ( 5 )
\begin{pmatrix}
e^{-\kappa a} & e^{ika}
\\ ike^{-ika} & -ike^{ika}
\end{pmatrix} \begin{pmatrix}
A_{+}
\\ A_{-}
\end{pmatrix} = \begin{pmatrix}
e^{-\kappa a} & e^{\kappa a}
\\ \kappa e^{-\kappa a} & -\kappa e^{\kappa a}
\end{pmatrix} \begin{pmatrix}
B_{+}
\\ B_{-}
\end{pmatrix}\quad \cdots (5)
( e − κa ik e − ika e ika − ik e ika ) ( A + A − ) = ( e − κa κ e − κa e κa − κ e κa ) ( B + B − ) ⋯ ( 5 )
Expressing ( 2 ) (2) ( 2 ) and ( 4 ) (4) ( 4 ) in matrix form,
( e κ a e − κ a κ e κ a − κ e − κ a ) ( B + B − ) = ( e i k a e − i k a i k e i k a − i k e − i k a ) ( C + 0 ) ⋯ ( 6 )
\begin{pmatrix}
e^{\kappa a} & e^{-\kappa a}
\\ \kappa e^{\kappa a} & -\kappa e^{-\kappa a}
\end{pmatrix} \begin{pmatrix}
B_{+}
\\ B_{-}
\end{pmatrix} = \begin{pmatrix}
e^{ik a} & e^{-ik a}
\\ ik e^{ik a} & -ik e^{-ika }
\end{pmatrix} \begin{pmatrix}
C_{+}
\\ 0
\end{pmatrix}\quad \cdots (6)
( e κa κ e κa e − κa − κ e − κa ) ( B + B − ) = ( e ika ik e ika e − ika − ik e − ika ) ( C + 0 ) ⋯ ( 6 )