logo

Linear Functionals on Lp Spaces 📂Lebesgue Spaces

Linear Functionals on Lp Spaces

Definition1

Let ΩRn\Omega \subset \mathbb{R}^{n} be an open set. Suppose that 1p1 \le p \le \infty and p=pp1p^{\prime}=\frac{p}{p-1}. For each vLp(Ω)v \in L^{p^{\prime}}(\Omega), define the linear functional Lv : Lp(Ω)CL_{v}\ :\ L^p(\Omega) \rightarrow \mathbb{C} on the space Lp(Ω)L^p(\Omega) as follows.

Lv(u)=Ωu(x)v(x)dx,uLp(Ω) L_{v}(u) = \int_{\Omega} u(x)v(x)dx, \quad u\in L^p(\Omega)

Theorem

Let the norm on the space LpL^p be denoted by p\| \cdot \|_{p}. Then, by the Hölder’s inequality, the following inequality holds.

Lv(u)upvp \left\| L_{v}(u) \right\| \le \left\| u \right\|_{p} \left\| v \right\|_{p^{\prime}}

Then the norm of LvL_{v} satisfies the following inequality.

Lv;(Lp):=sup{Lv(u) : u1}vp \left\|L_{v}; (L^p)^{\ast} \right\| :=\sup \left\{ |L_{v}(u)| \ :\ \left\| u \right\|\le1 \right\} \le \left\| v \right\|_{p^{\prime}}

Here, (Lp)(L^p)^{\ast} is the dual of LpL^p. In fact, equality can be shown to hold.

Proof

  • Case 1. 1<p1<p\le \infty

    Let u(x)u(x) be as follows.

    u(x)={v(x)p2v(x)if v(x)00otherwise u(x) =\begin{cases} |v(x)|^{p^{\prime}-2}\overline{v(x)} & \mathrm{if}\ v(x)\ne 0 \\ 0 & \mathrm{otherwise} \end{cases}

    Then, it can be shown that u(x)Lpu(x)\in L^p as follows.

    up= (updx)1p= (v(x)p2v(x)pdx)1p= (v(x)(p1)pdx)1p= (v(x)pdx)1p= (vpp)1p= vppp< \begin{align*} |u |_{p} =&\ \left( \int |u|^p dx \right)^{\frac{1}{p}} \\ =&\ \left( \int \left| |v(x)|^{p^{\prime}-2}\overline{v(x)} \right|^p dx \right)^{\frac{1}{p}} \\ =&\ \left( \int |v(x)|^{(p^{\prime}-1)p} dx \right)^{\frac{1}{p}} \\ =&\ \left( \int |v(x)|^{p^{\prime}} dx \right)^{\frac{1}{p}} \\ =&\ \left( \left\| v \right\|_{p^{\prime}}^{p^{\prime}}\right)^{\frac{1}{p}} \\ =&\ \left\| v \right\|_{p^{\prime}}^{\frac{p^{\prime}}{p}} < \infty \end{align*}

    Since 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1, by organizing properly, one can obtain ppp=ppp^{\prime}-p=p^{\prime}. Using this, the fourth equation holds. Also, since vLpv\in L^{p^{\prime}}, the last inequality holds. Since uLpu \in L^p, substituting into LvL_{v} gives

    Lv(u)= u(x)v(x)dx= v(x)p2v(x)v(x)dx= v(x)pdx= vpp= vp vpp1= vp vppp= vp up \begin{align*} L_{v}(u) =&\ \int u(x)v(x) dx \\ =&\ \int | v(x)|^{p^{\prime}-2}\overline{v(x)}v(x) dx \\ =&\ \int |v(x)|^{p^{\prime}} dx \\ =&\ \left\| v \right\|_{p^{\prime}}^{p^{\prime}} \\ =&\ \left\| v \right\|_{p^{\prime}}\ \left\| v \right\|_{p^{\prime}}^{p^{\prime}-1} \\ =&\ \left\| v \right\|_{p^{\prime}}\ \left\| v \right\|_{p^{\prime}}^{\frac{p^{\prime}}{p}} \\ =&\ \left\| v \right\|_{p^{\prime}}\ \left\| u \right\|_{p} \end{align*}

    Since 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1, by organizing properly, one can obtain pp=p1\frac{p^{\prime}}{p}=p^{\prime}-1. Using this, the sixth equation holds. Also, the last equation holds by using the result obtained above, up=vppp\left\| u \right\|_{p}=\left\| v \right\|_{p^{\prime}}^{\frac{p^{\prime}}{p}}. Therefore

    Lv(u)=upvp,Lv;(Lp)=vp | L_{v}(u)| = \left\| u \right\|_{p} \left\| v \right\|_{p^{\prime}}, \quad | L_{v}; (L^p)^{\ast}|=\left\| v \right\|_{p^{\prime}}

  • Case 2. p=1p=1

    If p=1p=1, then p=p^{\prime}=\infty. Initially, if vp=v=0\left\| v \right\|_{p^{\prime}}=\left\| v \right\|_{\infty}=0, let’s say u(x)=0u(x)=0. Then the equation holds. Otherwise, suppose 0<ϵ<v0 < \epsilon < \left\| v \right\|_{\infty}. Also, let AA be a measurable subset of Ω\Omega for which 0<μ(A)<0< \mu (A) < \infty holds, and suppose v(x)vϵ|v(x)| \ge \left\| v \right\|_{\infty} -\epsilon holds on AA. Now, let’s say u(x)u(x) as follows.

    u(x)={v(x)/v(x)on A0otherwise u(x)= \begin{cases} \overline{v(x)}/|v(x)| & \mathrm{on}\ A \\ 0 & \mathrm{otherwise} \end{cases} Then, one can see that uLp=L1u\in L^p=L^1.

    u1= Av(x)/v(x)dx= Adx=μ(A)< \begin{align*} \left\| u \right\|_{1} =&\ \int_{A} \left| \overline{v(x)}/|v(x)| \right| dx \\ =&\ \int_{A}dx= \mu (A) < \infty \end{align*}

    Since uL1u \in L^1, substituting into LvL_{v} gives

    Lv(u)= u(x)v(x)dx= vdx(vϵ)dx= (vϵ)dx= (vϵ)μ(A)= u1 (vϵ) \begin{align*} L_{v}(u) =&\ \int u(x)v(x)dx \\ =&\ \int |v| dx \\ \ge& \int (\left\| v \right\|_{\infty}-\epsilon )dx \\ =&\ (\left\| v \right\|_{\infty}-\epsilon)\int dx \\ =&\ (\left\| v \right\|_{\infty}-\epsilon) \mu (A) \\ =&\ \left\| u \right\|_{1}\ ( \left\| v \right\|_{\infty} -\epsilon ) \end{align*}

    Since Lv;(Lp)=sup{Lv(u) : u11}| L_{v}; (L^p)^{\ast}|=\sup \left\{ |L_{v}(u) |\ :\ \left\| u \right\|_{1} \le 1\right\}, by applying supu1\sup\limits_{\left\| u \right\|\le 1} to both sides of the obtained Lv(u)u1 (vϵ)|L_{v}(u)| \ge \left\| u \right\|_{1}\ ( \left\| v \right\|_{\infty}-\epsilon),

    Lv; (Lp)u1 (vϵ)vϵ | L_{v};\ (L^p)^{\ast} | \le \left\| u \right\|_{1}\ ( \left\| v \right\|_\infty -\epsilon ) \le \left\| v \right\|_{\infty}-\epsilon

    Therefore

    vϵLvv \left\| v \right\|_{\infty}-\epsilon \le | L_{v} | \le \left\| v \right\|_{\infty}

    And since this holds for any ϵ\epsilon,

    Lv;(LP)=v | L_{v}; (L^P)^{\ast}| =\left\| v \right\|_{\infty}


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p45-46 ↩︎