Linear Functionals on Lp Spaces
📂Lebesgue Spaces Linear Functionals on Lp Spaces Definition Let Ω ⊂ R n \Omega \subset \mathbb{R}^{n} Ω ⊂ R n be an open set . Suppose that 1 ≤ p ≤ ∞ 1 \le p \le \infty 1 ≤ p ≤ ∞ and p ′ = p p − 1 p^{\prime}=\frac{p}{p-1} p ′ = p − 1 p . For each v ∈ L p ′ ( Ω ) v \in L^{p^{\prime}}(\Omega) v ∈ L p ′ ( Ω ) , define the linear functional L v : L p ( Ω ) → C L_{v}\ :\ L^p(\Omega) \rightarrow \mathbb{C} L v : L p ( Ω ) → C on the space L p ( Ω ) L^p(\Omega) L p ( Ω ) as follows.
L v ( u ) = ∫ Ω u ( x ) v ( x ) d x , u ∈ L p ( Ω )
L_{v}(u) = \int_{\Omega} u(x)v(x)dx, \quad u\in L^p(\Omega)
L v ( u ) = ∫ Ω u ( x ) v ( x ) d x , u ∈ L p ( Ω )
Theorem Let the norm on the space L p L^p L p be denoted by ∥ ⋅ ∥ p \| \cdot \|_{p} ∥ ⋅ ∥ p . Then, by the Hölder’s inequality, the following inequality holds.
∥ L v ( u ) ∥ ≤ ∥ u ∥ p ∥ v ∥ p ′
\left\| L_{v}(u) \right\| \le \left\| u \right\|_{p} \left\| v \right\|_{p^{\prime}}
∥ L v ( u ) ∥ ≤ ∥ u ∥ p ∥ v ∥ p ′
Then the norm of L v L_{v} L v satisfies the following inequality.
∥ L v ; ( L p ) ∗ ∥ : = sup { ∣ L v ( u ) ∣ : ∥ u ∥ ≤ 1 } ≤ ∥ v ∥ p ′
\left\|L_{v}; (L^p)^{\ast} \right\| :=\sup \left\{ |L_{v}(u)| \ :\ \left\| u \right\|\le1 \right\} \le \left\| v \right\|_{p^{\prime}}
∥ L v ; ( L p ) ∗ ∥ := sup { ∣ L v ( u ) ∣ : ∥ u ∥ ≤ 1 } ≤ ∥ v ∥ p ′
Here, ( L p ) ∗ (L^p)^{\ast} ( L p ) ∗ is the dual of L p L^p L p . In fact, equality can be shown to hold.
Proof Case 1. 1 < p ≤ ∞ 1<p\le \infty 1 < p ≤ ∞
Let u ( x ) u(x) u ( x ) be as follows.
u ( x ) = { ∣ v ( x ) ∣ p ′ − 2 v ( x ) ‾ i f v ( x ) ≠ 0 0 o t h e r w i s e
u(x) =\begin{cases} |v(x)|^{p^{\prime}-2}\overline{v(x)} & \mathrm{if}\ v(x)\ne 0
\\ 0 & \mathrm{otherwise} \end{cases}
u ( x ) = { ∣ v ( x ) ∣ p ′ − 2 v ( x ) 0 if v ( x ) = 0 otherwise
Then, it can be shown that u ( x ) ∈ L p u(x)\in L^p u ( x ) ∈ L p as follows.
∣ u ∣ p = ( ∫ ∣ u ∣ p d x ) 1 p = ( ∫ ∣ ∣ v ( x ) ∣ p ′ − 2 v ( x ) ‾ ∣ p d x ) 1 p = ( ∫ ∣ v ( x ) ∣ ( p ′ − 1 ) p d x ) 1 p = ( ∫ ∣ v ( x ) ∣ p ′ d x ) 1 p = ( ∥ v ∥ p ′ p ′ ) 1 p = ∥ v ∥ p ′ p ′ p < ∞
\begin{align*}
|u |_{p} =&\ \left( \int |u|^p dx \right)^{\frac{1}{p}}
\\ =&\ \left( \int \left| |v(x)|^{p^{\prime}-2}\overline{v(x)} \right|^p dx \right)^{\frac{1}{p}}
\\ =&\ \left( \int |v(x)|^{(p^{\prime}-1)p} dx \right)^{\frac{1}{p}}
\\ =&\ \left( \int |v(x)|^{p^{\prime}} dx \right)^{\frac{1}{p}}
\\ =&\ \left( \left\| v \right\|_{p^{\prime}}^{p^{\prime}}\right)^{\frac{1}{p}}
\\ =&\ \left\| v \right\|_{p^{\prime}}^{\frac{p^{\prime}}{p}} < \infty
\end{align*}
∣ u ∣ p = = = = = = ( ∫ ∣ u ∣ p d x ) p 1 ( ∫ ∣ v ( x ) ∣ p ′ − 2 v ( x ) p d x ) p 1 ( ∫ ∣ v ( x ) ∣ ( p ′ − 1 ) p d x ) p 1 ( ∫ ∣ v ( x ) ∣ p ′ d x ) p 1 ( ∥ v ∥ p ′ p ′ ) p 1 ∥ v ∥ p ′ p p ′ < ∞
Since 1 p + 1 p ′ = 1 \frac{1}{p}+\frac{1}{p^{\prime}}=1 p 1 + p ′ 1 = 1 , by organizing properly, one can obtain p p ′ − p = p ′ pp^{\prime}-p=p^{\prime} p p ′ − p = p ′ . Using this, the fourth equation holds. Also, since v ∈ L p ′ v\in L^{p^{\prime}} v ∈ L p ′ , the last inequality holds. Since u ∈ L p u \in L^p u ∈ L p , substituting into L v L_{v} L v gives
L v ( u ) = ∫ u ( x ) v ( x ) d x = ∫ ∣ v ( x ) ∣ p ′ − 2 v ( x ) ‾ v ( x ) d x = ∫ ∣ v ( x ) ∣ p ′ d x = ∥ v ∥ p ′ p ′ = ∥ v ∥ p ′ ∥ v ∥ p ′ p ′ − 1 = ∥ v ∥ p ′ ∥ v ∥ p ′ p ′ p = ∥ v ∥ p ′ ∥ u ∥ p
\begin{align*}
L_{v}(u) =&\ \int u(x)v(x) dx
\\ =&\ \int | v(x)|^{p^{\prime}-2}\overline{v(x)}v(x) dx
\\ =&\ \int |v(x)|^{p^{\prime}} dx
\\ =&\ \left\| v \right\|_{p^{\prime}}^{p^{\prime}}
\\ =&\ \left\| v \right\|_{p^{\prime}}\ \left\| v \right\|_{p^{\prime}}^{p^{\prime}-1}
\\ =&\ \left\| v \right\|_{p^{\prime}}\ \left\| v \right\|_{p^{\prime}}^{\frac{p^{\prime}}{p}}
\\ =&\ \left\| v \right\|_{p^{\prime}}\ \left\| u \right\|_{p}
\end{align*}
L v ( u ) = = = = = = = ∫ u ( x ) v ( x ) d x ∫ ∣ v ( x ) ∣ p ′ − 2 v ( x ) v ( x ) d x ∫ ∣ v ( x ) ∣ p ′ d x ∥ v ∥ p ′ p ′ ∥ v ∥ p ′ ∥ v ∥ p ′ p ′ − 1 ∥ v ∥ p ′ ∥ v ∥ p ′ p p ′ ∥ v ∥ p ′ ∥ u ∥ p
Since 1 p + 1 p ′ = 1 \frac{1}{p}+\frac{1}{p^{\prime}}=1 p 1 + p ′ 1 = 1 , by organizing properly, one can obtain p ′ p = p ′ − 1 \frac{p^{\prime}}{p}=p^{\prime}-1 p p ′ = p ′ − 1 . Using this, the sixth equation holds. Also, the last equation holds by using the result obtained above, ∥ u ∥ p = ∥ v ∥ p ′ p ′ p \left\| u \right\|_{p}=\left\| v \right\|_{p^{\prime}}^{\frac{p^{\prime}}{p}} ∥ u ∥ p = ∥ v ∥ p ′ p p ′ . Therefore
∣ L v ( u ) ∣ = ∥ u ∥ p ∥ v ∥ p ′ , ∣ L v ; ( L p ) ∗ ∣ = ∥ v ∥ p ′
| L_{v}(u)| = \left\| u \right\|_{p} \left\| v \right\|_{p^{\prime}}, \quad | L_{v}; (L^p)^{\ast}|=\left\| v \right\|_{p^{\prime}}
∣ L v ( u ) ∣ = ∥ u ∥ p ∥ v ∥ p ′ , ∣ L v ; ( L p ) ∗ ∣ = ∥ v ∥ p ′
Case 2. p = 1 p=1 p = 1
If p = 1 p=1 p = 1 , then p ′ = ∞ p^{\prime}=\infty p ′ = ∞ . Initially, if ∥ v ∥ p ′ = ∥ v ∥ ∞ = 0 \left\| v \right\|_{p^{\prime}}=\left\| v \right\|_{\infty}=0 ∥ v ∥ p ′ = ∥ v ∥ ∞ = 0 , let’s say u ( x ) = 0 u(x)=0 u ( x ) = 0 . Then the equation holds. Otherwise, suppose 0 < ϵ < ∥ v ∥ ∞ 0 < \epsilon < \left\| v \right\|_{\infty} 0 < ϵ < ∥ v ∥ ∞ . Also, let A A A be a measurable subset of Ω \Omega Ω for which 0 < μ ( A ) < ∞ 0< \mu (A) < \infty 0 < μ ( A ) < ∞ holds, and suppose ∣ v ( x ) ∣ ≥ ∥ v ∥ ∞ − ϵ |v(x)| \ge \left\| v \right\|_{\infty} -\epsilon ∣ v ( x ) ∣ ≥ ∥ v ∥ ∞ − ϵ holds on A A A . Now, let’s say u ( x ) u(x) u ( x ) as follows.
u ( x ) = { v ( x ) ‾ / ∣ v ( x ) ∣ o n A 0 o t h e r w i s e
u(x)= \begin{cases} \overline{v(x)}/|v(x)| & \mathrm{on}\ A
\\ 0 & \mathrm{otherwise} \end{cases}
u ( x ) = { v ( x ) /∣ v ( x ) ∣ 0 on A otherwise
Then, one can see that u ∈ L p = L 1 u\in L^p=L^1 u ∈ L p = L 1 .
∥ u ∥ 1 = ∫ A ∣ v ( x ) ‾ / ∣ v ( x ) ∣ ∣ d x = ∫ A d x = μ ( A ) < ∞
\begin{align*}
\left\| u \right\|_{1} =&\ \int_{A} \left| \overline{v(x)}/|v(x)| \right| dx
\\ =&\ \int_{A}dx= \mu (A) < \infty
\end{align*}
∥ u ∥ 1 = = ∫ A v ( x ) /∣ v ( x ) ∣ d x ∫ A d x = μ ( A ) < ∞
Since u ∈ L 1 u \in L^1 u ∈ L 1 , substituting into L v L_{v} L v gives
L v ( u ) = ∫ u ( x ) v ( x ) d x = ∫ ∣ v ∣ d x ≥ ∫ ( ∥ v ∥ ∞ − ϵ ) d x = ( ∥ v ∥ ∞ − ϵ ) ∫ d x = ( ∥ v ∥ ∞ − ϵ ) μ ( A ) = ∥ u ∥ 1 ( ∥ v ∥ ∞ − ϵ )
\begin{align*}
L_{v}(u) =&\ \int u(x)v(x)dx
\\ =&\ \int |v| dx
\\ \ge& \int (\left\| v \right\|_{\infty}-\epsilon )dx
\\ =&\ (\left\| v \right\|_{\infty}-\epsilon)\int dx
\\ =&\ (\left\| v \right\|_{\infty}-\epsilon) \mu (A)
\\ =&\ \left\| u \right\|_{1}\ ( \left\| v \right\|_{\infty} -\epsilon )
\end{align*}
L v ( u ) = = ≥ = = = ∫ u ( x ) v ( x ) d x ∫ ∣ v ∣ d x ∫ ( ∥ v ∥ ∞ − ϵ ) d x ( ∥ v ∥ ∞ − ϵ ) ∫ d x ( ∥ v ∥ ∞ − ϵ ) μ ( A ) ∥ u ∥ 1 ( ∥ v ∥ ∞ − ϵ )
Since ∣ L v ; ( L p ) ∗ ∣ = sup { ∣ L v ( u ) ∣ : ∥ u ∥ 1 ≤ 1 } | L_{v}; (L^p)^{\ast}|=\sup \left\{ |L_{v}(u) |\ :\ \left\| u \right\|_{1} \le 1\right\} ∣ L v ; ( L p ) ∗ ∣ = sup { ∣ L v ( u ) ∣ : ∥ u ∥ 1 ≤ 1 } , by applying sup ∥ u ∥ ≤ 1 \sup\limits_{\left\| u \right\|\le 1} ∥ u ∥ ≤ 1 sup to both sides of the obtained ∣ L v ( u ) ∣ ≥ ∥ u ∥ 1 ( ∥ v ∥ ∞ − ϵ ) |L_{v}(u)| \ge \left\| u \right\|_{1}\ ( \left\| v \right\|_{\infty}-\epsilon) ∣ L v ( u ) ∣ ≥ ∥ u ∥ 1 ( ∥ v ∥ ∞ − ϵ ) ,
∣ L v ; ( L p ) ∗ ∣ ≤ ∥ u ∥ 1 ( ∥ v ∥ ∞ − ϵ ) ≤ ∥ v ∥ ∞ − ϵ
| L_{v};\ (L^p)^{\ast} | \le \left\| u \right\|_{1}\ ( \left\| v \right\|_\infty -\epsilon ) \le \left\| v \right\|_{\infty}-\epsilon
∣ L v ; ( L p ) ∗ ∣ ≤ ∥ u ∥ 1 ( ∥ v ∥ ∞ − ϵ ) ≤ ∥ v ∥ ∞ − ϵ
Therefore
∥ v ∥ ∞ − ϵ ≤ ∣ L v ∣ ≤ ∥ v ∥ ∞
\left\| v \right\|_{\infty}-\epsilon \le | L_{v} | \le \left\| v \right\|_{\infty}
∥ v ∥ ∞ − ϵ ≤ ∣ L v ∣ ≤ ∥ v ∥ ∞
And since this holds for any ϵ \epsilon ϵ ,
∣ L v ; ( L P ) ∗ ∣ = ∥ v ∥ ∞
| L_{v}; (L^P)^{\ast}| =\left\| v \right\|_{\infty}
∣ L v ; ( L P ) ∗ ∣ = ∥ v ∥ ∞
■