벡터 삼중곱, BAC-CAB 공식
📂수리물리 벡터 삼중곱, BAC-CAB 공식 공식 A × ( B × C ) = B ( A ⋅ C ) − C ( A ⋅ B )
\mathbf{A} \times (\mathbf{B} \times \mathbf{C} ) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C} )-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})
A × ( B × C ) = B ( A ⋅ C ) − C ( A ⋅ B )
설명 위 공식의 좌변을 벡터 삼중곱 vector triple product 이라 한다. 우변의 결과를 간단하게 BAC-CAB(백캡) 이라고 한다. 벡터 삼중곱은 벡터를 3번 곱하는 연산 중에서 그 결과가 벡터인 것이다. 결과가 벡터로 나오기 위해서 식에는 외적만 두 번 들어간다. 두 벡터의 외적은 여전히 벡터이므로 다시 다른 벡터와 외적할 수 있다.
결과가 스칼라인 것은 스칼라 삼중곱 이라 부른다. 그 모양은 아래와 같다.
A ⋅ ( B × C )
\mathbf{A}\cdot (\mathbf{B}\times \mathbf{C})
A ⋅ ( B × C )
단, 내적의 연산결과가 스칼라기 때문에 내적이 두 번 들어가거나 내적과 외적의 연산순서가 반대라면 틀린식이 된다.
A ⋅ ( B ⋅ C ) → 틀린 식
\mathbf{A}\cdot (\mathbf{B}\cdot \mathbf{C}) \to \text{틀린 식}
A ⋅ ( B ⋅ C ) → 틀린 식
A × ( B ⋅ C ) → 틀린 식
\mathbf{A}\times (\mathbf{B}\cdot \mathbf{C})\to \text{틀린 식}
A × ( B ⋅ C ) → 틀린 식
또한 외적은 결합법칙이 성립하지 않기 때문에 아래와 같이 등호가 성립하지 않는다.
A × ( B × C ) ≠ ( A × B ) × C
\mathbf{A}\times (\mathbf{B}\times \mathbf{C})\neq (\mathbf{A}\times \mathbf{B})\times \mathbf{C}
A × ( B × C ) = ( A × B ) × C
증명 아래의 증명은 3차원 직교좌표계에 대한 내용이며, 증명에서는 아인슈타인 표기법 을 사용하여 합기호 ∑ \sum ∑ 을 생략하였다.
A × ( B × C ) = ϵ i j k e i A j ( B × C ) k = ϵ i j k e i A j ( ϵ k l m B l C m ) = ϵ i j k ϵ k l m e i A j B l C m = ( δ i l δ j m − δ i m δ j l ) ( e i A j B l C m ) = δ i l δ j m e i A j B l C m − δ i m δ j l e i A j B l C m = e i A j B i C j − e i A j B j C i = e i B i A j C j − e i C i A j B j = B ( A ⋅ C ) − C ( A ⋅ B )
\begin{align*}
\mathbf{A} \times (\mathbf{ B }\times \mathbf{ C })=&\ \epsilon _{ ijk }\mathbf{e}_{i}A_{ j }(B\times C)_{ k }
\\ =&\ \epsilon _{ ijk }\mathbf{e}_{i}A_{ j }(\epsilon _{ klm }B_{ l }C_{ m })
\\ =&\ \epsilon _{ ijk }\epsilon _{ klm }\mathbf{e}_{i}A_{ j }B_{ l }C_{ m }
\\ =&\ (\delta _{ il }\delta _{ jm }-\delta _{ im }\delta _{ jl })(\mathbf{e}_{i}A_{ j }B_{ l }C_{ m })
\\ =&\ \delta _{ il }\delta _{ jm }\mathbf{e}_{i}A_{ j }B_{ l }C_{ m }-\delta _{ im }\delta _{ jl }\mathbf{e}_{i}A_{ j }B_{ l }C_{ m }
\\ =&\ \mathbf{e}_{i}A_{ j }B_{ i }C_{ j }-\mathbf{e}_{i}A_{ j }B_{ j }C_{ i }
\\ =&\ \mathbf{e}_{i}B_{ i }A_{ j }C_{ j }-\mathbf{e}_{i}C_{ i }A_{ j }B_{ j }
\\ =&\ \mathbf{B}(\mathbf{A} \cdot \mathbf{C} )-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})
\end{align*}
A × ( B × C ) = = = = = = = = ϵ ijk e i A j ( B × C ) k ϵ ijk e i A j ( ϵ k l m B l C m ) ϵ ijk ϵ k l m e i A j B l C m ( δ i l δ jm − δ im δ j l ) ( e i A j B l C m ) δ i l δ jm e i A j B l C m − δ im δ j l e i A j B l C m e i A j B i C j − e i A j B j C i e i B i A j C j − e i C i A j B j B ( A ⋅ C ) − C ( A ⋅ B )
네번째 등호는 ϵ i j k ϵ k l m = δ i l δ j m − δ i m δ j l \epsilon_{ijk}\epsilon_{klm}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl} ϵ ijk ϵ k l m = δ i l δ jm − δ im δ j l 이므로 성립한다.
■
증명을 보면 알겠지만 몇 번 연습해보면 공식을 까먹어도 시험치는 도중에 유도할 수 있을 정도이다.
직접 계산 A × ( B × C ) = A × ∣ x ^ y ^ z ^ B x B y B z C x C y C z ∣ = A × [ ( B y C z − B z C y ) x ^ + ( B z C x − B x C z ) y ^ + ( B x C y − B y C x ) z ^ ] = ∣ x ^ y ^ z ^ A x A y A z B y C z − B z C y B z C x − B x C z B x C y − B y C x ∣ = [ A y ( B x C y − B y C x ) − A z ( B z C x − B x C z ) ] x ^ + [ A z ( B y C z − B z C y ) − A x ( B x C y − B y C x ) ] y ^ + [ A x ( B z C x − B x C z ) − A y ( B y C z − B z C y ) ] z ^ = ( A y B x C y + A z B x C z − A y B y C x − A z B z C x ) x ^ + ( A z B y C z + A x B y C x − A z B z C y − A x B x C y ) y ^ + ( A x B z C x + A y B z C y − A x B x C z − A y B y C z ) z ^
\begin{align*}
& \mathbf{A} \times (\mathbf{B} \times \mathbf{C})
\\ =&\ \mathbf{A} \times \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}}
\\ B_{x} & B_{y} & B_{z}
\\ C_{x} & C_{y} & C_{z}\end{vmatrix}
\\ =&\ \mathbf{A} \times \Big[ (B_{y}C_{z}-B_{z}C_{y})\hat{\mathbf{x}} + (B_{z}C_{x}-B_{x}C_{z})\hat{\mathbf{y}} +(B_{x}C_{y}-B_{y}C_{x})\hat{\mathbf{z}} \Big]
\\ =&\ \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}}
\\ A_{x} & A_{y} & A_{z}
\\ B_{y}C_{z}-B_{z}C_{y} & B_{z}C_{x}-B_{x}C_{z} & B_{x}C_{y}-B_{y}C_{x}\end{vmatrix}
\\ =&\ \Big[ A_{y}(B_{x}C_{y}-B_{y}C_{x})-A_{z}(B_{z}C_{x}-B_{x}C_{z}) \Big]\hat{\mathbf{x}}
\\ &\quad +\Big[ A_{z}(B_{y}C_{z}-B_{z}C_{y})-A_{x}(B_{x}C_{y}-B_{y}C_{x}) \Big]\hat{\mathbf{y}}
\\ &\quad +\Big[ A_{x}(B_{z}C_{x}-B_{x}C_{z})-A_{y}(B_{y}C_{z}-B_{z}C_{y}) \Big]\hat{\mathbf{z}}
\\ =&\ (A_{y}B_{x}C_{y}+A_{z}B_{x}C_{z}-A_{y}B_{y}C_{x}-A_{z}B_{z}C_{x}) \hat{\mathbf{x}}
\\ &\quad +(A_{z}B_{y}C_{z}+A_{x}B_{y}C_{x}-A_{z}B_{z}C_{y}-A_{x}B_{x}C_{y}) \hat{\mathbf{y}}
\\ &\quad +( A_{x}B_{z}C_{x}+A_{y}B_{z}C_{y}-A_{x}B_{x}C_{z}-A_{y}B_{y}C_{z}) \hat{\mathbf{z}}
\end{align*}
= = = = = A × ( B × C ) A × x ^ B x C x y ^ B y C y z ^ B z C z A × [ ( B y C z − B z C y ) x ^ + ( B z C x − B x C z ) y ^ + ( B x C y − B y C x ) z ^ ] x ^ A x B y C z − B z C y y ^ A y B z C x − B x C z z ^ A z B x C y − B y C x [ A y ( B x C y − B y C x ) − A z ( B z C x − B x C z ) ] x ^ + [ A z ( B y C z − B z C y ) − A x ( B x C y − B y C x ) ] y ^ + [ A x ( B z C x − B x C z ) − A y ( B y C z − B z C y ) ] z ^ ( A y B x C y + A z B x C z − A y B y C x − A z B z C x ) x ^ + ( A z B y C z + A x B y C x − A z B z C y − A x B x C y ) y ^ + ( A x B z C x + A y B z C y − A x B x C z − A y B y C z ) z ^
B ( A ⋅ C ) − C ( A ⋅ B ) = B x ( A x C x + A y C y + A z C z ) x ^ − C x ( A x B x + A y B y + A z B z ) x ^ + B y ( A x C x + A y C y + A z C z ) y ^ − C y ( A x B x + A y B y + A z B z ) y ^ + B z ( A x C x + A y C y + A z C z ) z ^ − C z ( A x B x + A y B y + A z B z ) z ^ = ( A x B x C x + A y B x C y + A z B x C z − A x B x C x − A y B y C x − A z B z C x ) x ^ + ( A x B y C x + A y B y C y + A z B y C z − A x B x C y − A y B y C y − A z B z C y ) y ^ + ( A x B z C x + A y B z C y + A z B z C z − A x B x C z − A y B y C z − A z B z C z ) z ^ = ( A y B x C y + A z B x C z − A y B y C x − A z B z C x ) x ^ + ( A z B y C z + A x B y C x − A z B z C y − A x B x C y ) y ^ + ( A x B z C x + A y B z C y − A x B x C z − A y B y C z ) z ^
\begin{align*}
& \mathbf{B}(\mathbf{A}\cdot \mathbf{C}) - \mathbf{C}(\mathbf{A}\cdot \mathbf{B})
\\ =&\ B_{x}(A_{x}C_{x}+A_{y}C_{y}+A_{z}C_{z})\hat{\mathbf{x}} -C_{x}(A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{z})\hat{\mathbf{x}}
\\ &\quad + B_{y}(A_{x}C_{x}+A_{y}C_{y}+A_{z}C_{z})\hat{\mathbf{y}} -C_{y}(A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{z})\hat{\mathbf{y}}
\\ &\quad + B_{z}(A_{x}C_{x}+A_{y}C_{y}+A_{z}C_{z})\hat{\mathbf{z}} -C_{z}(A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{z})\hat{\mathbf{z}}
\\ =&\ ({\color{red}A_{x}B_{x}C_{x}}+A_{y}B_{x}C_{y}+A_{z}B_{x}C_{z}{\color{red}-A_{x}B_{x}C_{x}}-A_{y}B_{y}C_{x}-A_{z}B_{z}C_{x})\hat{\mathbf{x}}
\\ &\quad + (A_{x}B_{y}C_{x}+{\color{red}A_{y}B_{y}C_{y}}+A_{z}B_{y}C_{z}-A_{x}B_{x}C_{y} {\color{red}-A_{y}B_{y}C_{y}}-A_{z}B_{z}C_{y})\hat{\mathbf{y}}
\\ &\quad + (A_{x}B_{z}C_{x}+A_{y}B_{z}C_{y}+{\color{red}A_{z}B_{z}C_{z}}-A_{x}B_{x}C_{z}-A_{y}B_{y}C_{z} {\color{red}-A_{z}B_{z}C_{z}})\hat{\mathbf{z}}
\\ =&\ (A_{y}B_{x}C_{y}+A_{z}B_{x}C_{z}-A_{y}B_{y}C_{x}-A_{z}B_{z}C_{x}) \hat{\mathbf{x}}
\\ &\quad +(A_{z}B_{y}C_{z}+A_{x}B_{y}C_{x}-A_{z}B_{z}C_{y}-A_{x}B_{x}C_{y}) \hat{\mathbf{y}}
\\ &\quad +( A_{x}B_{z}C_{x}+A_{y}B_{z}C_{y}-A_{x}B_{x}C_{z}-A_{y}B_{y}C_{z}) \hat{\mathbf{z}}
\end{align*}
= = = B ( A ⋅ C ) − C ( A ⋅ B ) B x ( A x C x + A y C y + A z C z ) x ^ − C x ( A x B x + A y B y + A z B z ) x ^ + B y ( A x C x + A y C y + A z C z ) y ^ − C y ( A x B x + A y B y + A z B z ) y ^ + B z ( A x C x + A y C y + A z C z ) z ^ − C z ( A x B x + A y B y + A z B z ) z ^ ( A x B x C x + A y B x C y + A z B x C z − A x B x C x − A y B y C x − A z B z C x ) x ^ + ( A x B y C x + A y B y C y + A z B y C z − A x B x C y − A y B y C y − A z B z C y ) y ^ + ( A x B z C x + A y B z C y + A z B z C z − A x B x C z − A y B y C z − A z B z C z ) z ^ ( A y B x C y + A z B x C z − A y B y C x − A z B z C x ) x ^ + ( A z B y C z + A x B y C x − A z B z C y − A x B x C y ) y ^ + ( A x B z C x + A y B z C y − A x B x C z − A y B y C z ) z ^
두 식이 같으므로 다음의 식을 얻는다.
A × ( B × C ) = B ( A ⋅ C ) − C ( A ⋅ B )
\mathbf{A} \times (\mathbf{B} \times \mathbf{C} )= \mathbf{B}(\mathbf{A} \cdot \mathbf{C} )-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})
A × ( B × C ) = B ( A ⋅ C ) − C ( A ⋅ B )
■
따름정리 [ A × ( B × C ) ] + [ B × ( C × A ) ] + [ C × ( A × B ) ] = 0
[\mathbf{A} \times (\mathbf{B} \times \mathbf{C})] +[\mathbf{B} \times (\mathbf{C} \times \mathbf{A})] +[\mathbf{C} \times (\mathbf{A} \times \mathbf{B})] = \mathbf{0}
[ A × ( B × C )] + [ B × ( C × A )] + [ C × ( A × B )] = 0
증명 BAC-CAB 공식에 의해 다음의 식들이 성립한다.
A × ( B × C ) = B ( A ⋅ C ) − C ( A ⋅ B ) B × ( C × B ) = C ( B ⋅ A ) − A ( B ⋅ C ) C × ( A × B ) = A ( C ⋅ B ) − B ( C ⋅ A )
\begin{align*}
\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) =&\ \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) -\mathbf{C} (\mathbf{A} \cdot \mathbf{B})
\\ \mathbf{B} \times (\mathbf{C} \times \mathbf{B}) =&\ \mathbf{C}(\mathbf{B} \cdot \mathbf{A}) -\mathbf{A} (\mathbf{B} \cdot \mathbf{C})
\\ \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) =&\ \mathbf{A}(\mathbf{C} \cdot \mathbf{B}) -\mathbf{B} (\mathbf{C} \cdot \mathbf{A})
\end{align*}
A × ( B × C ) = B × ( C × B ) = C × ( A × B ) = B ( A ⋅ C ) − C ( A ⋅ B ) C ( B ⋅ A ) − A ( B ⋅ C ) A ( C ⋅ B ) − B ( C ⋅ A )
위 식들을 다 더하면 다음과 같다.
[ A × ( B × C ) ] + [ B × ( C × A ) ] + [ C × ( A × B ) ] = B ( A ⋅ C ) − C ( A ⋅ B ) + C ( B ⋅ A ) − A ( B ⋅ C ) + A ( C ⋅ B ) − B ( C ⋅ A ) = [ A ( C ⋅ B ) − A ( B ⋅ C ) ] + [ B ( A ⋅ C ) − B ( C ⋅ A ) ] + [ C ( B ⋅ A ) − C ( A ⋅ B ) ] = 0
\begin{align*}
& \left[\mathbf{A} \times (\mathbf{B} \times \mathbf{C})\right] +\left[\mathbf{B} \times (\mathbf{C} \times \mathbf{A})\right] +\left[\mathbf{C} \times (\mathbf{A} \times \mathbf{B})\right]
\\ =&\ \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) -\mathbf{C} (\mathbf{A} \cdot \mathbf{B})+\mathbf{C}(\mathbf{B} \cdot \mathbf{A}) -\mathbf{A} (\mathbf{B} \cdot \mathbf{C}) +\mathbf{A}(\mathbf{C} \cdot \mathbf{B}) -\mathbf{B} (\mathbf{C} \cdot \mathbf{A})
\\ =&\ \left[\mathbf{A}(\mathbf{C} \cdot \mathbf{B}) -\mathbf{A} (\mathbf{B} \cdot \mathbf{C})\right] +\left[\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) -\mathbf{B} (\mathbf{C} \cdot \mathbf{A}) \right] +\left[\mathbf{C}(\mathbf{B} \cdot \mathbf{A}) -\mathbf{C} (\mathbf{A} \cdot \mathbf{B})\right]
\\ =&\ \mathbf{0}
\end{align*}
= = = [ A × ( B × C ) ] + [ B × ( C × A ) ] + [ C × ( A × B ) ] B ( A ⋅ C ) − C ( A ⋅ B ) + C ( B ⋅ A ) − A ( B ⋅ C ) + A ( C ⋅ B ) − B ( C ⋅ A ) [ A ( C ⋅ B ) − A ( B ⋅ C ) ] + [ B ( A ⋅ C ) − B ( C ⋅ A ) ] + [ C ( B ⋅ A ) − C ( A ⋅ B ) ] 0
■