logo

선형변환과 몫공간으로의 사상의 특성다항식 사이의 관계 📂선형대수

선형변환과 몫공간으로의 사상의 특성다항식 사이의 관계

정리1

$V$를 $n$차원 벡터공간이라고 하자. $T : V \to V$를 선형변환, $W \le V$를 $T$-불변 부분공간, $T|_{W}$를 축소사상, $\overline{T}$를 몫 공간 위의 선형변환이라고 하자.

$$ T|_{W} : W \to W \\ \overline{T} : V/W \to V/W $$

$f(t), g(t), h(t)$를 각각 $T, T|_{W}, \overline{T}$의 특성 다항식이라고 하자. 그러면 다음이 성립한다.

$$ f(t) = g(t)h(t) $$

따름정리

증명

$\gamma = \left\{ v_{1}, \dots, v_{k} \right\}$를 $W$의 순서기저라고 하자. $\beta = \left\{ v_{1}, \dots, v_{k}, v_{k+1}, \dots, v_{n} \right\}$을 $\gamma$로부터 확장된 $V$의 기저라고 하자. 그러면 몫 공간의 기저는 $\alpha = \left\{ v_{k+1} + W, \dots, v_{n}+W \right\}$이다. 또한 다음이 성립한다.

$$ \begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} \begin{bmatrix} T|_{W} \end{bmatrix}_{\gamma} & A \\ O & B \end{bmatrix} $$

이제 $B = \begin{bmatrix}\ \overline{T}\ \end{bmatrix}_{\alpha}$를 보일 것이다. 우선 위 행렬을 다시 적어보면,

$$ \begin{bmatrix} T \end{bmatrix}_{\beta} = \left[ \begin{array}{c|c} \begin{bmatrix} T|_{W} \end{bmatrix}_{\gamma} & \begin{array}{ccc} t_{1,k+1} & \cdots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{k,k+1} & \cdots & t_{kn} \end{array} \\ \hline O & \begin{array}{ccc} t_{k+1,k+1} & \cdots & t_{k+1,n} \\ \vdots & \ddots & \vdots \\ t_{n,k+1} & \cdots & t_{nn} \end{array} \end{array} \right] $$

$\begin{bmatrix} T \end{bmatrix}_{\beta}$의 $k+1$번째 열의 성분을 구해보자. 행렬표현을 찾기위해서는 기저가 어떤 원소로 매핑되는지 보면 된다. $Tv_{k+1}, \dots, Tn_{n}$들이 다음과 같은 선형결합으로 나타난다고 하자.

$$ Tv_{k+1} = \sum_{i=1}^{n} a_{i,k+1}v_{i},\quad \dots,\quad Tv_{n} = \sum_{i=1}^{n} a_{in}v_{i} $$

그러면

$$ \begin{bmatrix} T \end{bmatrix}_{\beta} = \left[ \begin{array}{c|c} \begin{bmatrix} T|_{W} \end{bmatrix}_{\gamma} & \begin{array}{ccc} a_{1,k+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k,k+1} & \cdots & a_{kn} \end{array} \\ \hline O & \begin{array}{ccc} a_{k+1,k+1} & \cdots & a_{k+1,n} \\ \vdots & \ddots & \vdots \\ a_{n,k+1} & \cdots & a_{nn} \end{array} \end{array} \right] $$

이제 $\begin{bmatrix}\ \overline{T}(v_{k+1} + W) \end{bmatrix}_{\alpha}$를 구해보자. $v_{1}, \dots, v_{k} \in W$이므로, $av_{i} \in W\ (1 \le i \le k)$이고, $av_{i} + W = W\ (1 \le i \le k)$이다. $W$는 $V/W$에서 영벡터이므로,

$$ \begin{align*} \overline{T}(v_{k+1} + W) &= T(v_{k+1}) + W \\ &= \left( \sum_{i=1}^{n}a_{i,k+1}v_{i} \right) + W \\ &= \left( a_{1,k+1}v_{1} + W \right) + \cdots + \left( a_{k,k+1}v_{k} + W \right) \\ &\quad + \left( a_{k+1,k+1}v_{k+1} + W \right) + \cdots + \left( a_{n,k+1}v_{n} + W \right)\\ &= \left( a_{k+1,k+1}v_{k+1} + W \right) + \cdots + \left( a_{n,k+1}v_{n} + W \right)\\ &= a_{k+1,k+1}\left( v_{k+1} + W \right) + \cdots a_{n,k+1}\left( v_{n} + W \right)\\ &= \sum\limits_{i=k+1}^{n}a_{i,k+1}\left( v_{i} + W \right) \end{align*} $$

이므로 $\begin{bmatrix}\ \overline{T}(v_{k+1} + W) \end{bmatrix}_{\alpha} = \begin{bmatrix} a_{k+1,k+1} \\ \vdots \\ a_{n,k+1}\end{bmatrix}$이다. 그러므로 다음이 성립한다.

$$ \begin{bmatrix}\ \overline{T}\ \end{bmatrix}_{\alpha} = \begin{bmatrix} \begin{bmatrix}\ \overline{T}(v_{k+1} + W) \end{bmatrix}_{\alpha} & \cdots & \begin{bmatrix}\ \overline{T}(v_{n} + W) \end{bmatrix}_{\alpha}\end{bmatrix} = \begin{bmatrix} a_{k+1,k+1} & \cdots & a_{k+1,n} \\ \vdots & \ddots & \vdots \\ a_{n,k+1} & \cdots & a_{nn} \end{bmatrix} $$

따라서 $A = \begin{bmatrix} a_{1,k+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{k,k+1} & \cdots & a_{kn} \end{bmatrix}$라고 하면,

$$ \begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} \begin{bmatrix} T|_{W} \end{bmatrix}_{\gamma} & A \\ O & \begin{bmatrix}\ \overline{T}\ \end{bmatrix}_{\alpha} \end{bmatrix} $$

$$ \implies \begin{bmatrix} T \end{bmatrix}_{\beta} -\lambda I = \begin{bmatrix} \begin{bmatrix} T|_{W} \end{bmatrix}_{\gamma} - \lambda I & A \\ O & \begin{bmatrix}\ \overline{T}\ \end{bmatrix}_{\alpha} - \lambda I \end{bmatrix} $$

블록 행렬의 행렬식

$A = \begin{bmatrix} A_{1} & A_{2} \\ O & A_{3} \end{bmatrix}$를 블록행렬이라고 하자. 그러면 다음이 성립한다.

$$ \det A = \det A_{1} \det A_{3} $$

그러므로

$$ f(t) = \det \left( \begin{bmatrix} T \end{bmatrix}_{\beta} -\lambda I \right) = \det \left( \begin{bmatrix} T|_{W} \end{bmatrix}_{\gamma} - \lambda I \right) \det \left( \begin{bmatrix}\ \overline{T}\ \end{bmatrix}_{\alpha} - \lambda I \right) = g(t)h(t) $$


  1. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p325-326 ↩︎