다변량정규분포의 선형변환
정리 1
선형변환의 정규성
행렬 $A \in \mathbb{R}^{m \times n}$ 과 벡터 $\mathbf{b} \in \mathbb{R}^{m}$ 에 대해 다변량정규분포를 따르는 랜덤벡터 $\mathbf{X} \sim N_{n} \left( \mu , \Sigma \right)$ 의 선형변환 $\mathbf{Y} = A \mathbf{X} + \mathbf{b}$ 는 여전히 다변량정규분포 $N_{m} \left( A \mu + \mathbf{b} , A \Sigma A^{T} \right)$ 를 따른다.
마지널 분포의 정규성
$$ \begin{align*} \mathbf{X} =& \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \end{bmatrix} & : \Omega \to \mathbb{R}^{n} \\ \mu =& \begin{bmatrix} \mu_{1} \\ \mu_{2} \end{bmatrix} & \in \mathbb{R}^{n} \\ \Sigma =& \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} & \in \mathbb{R}^{n \times n} \end{align*} $$ 위와 같이 $\mathbf{X}$, $\mu$, $\Sigma$ 를 조던블럭폼으로 나타냈다고 하자. 만약 $\mathbf{X} \sim N_{n} \left( \mu, \Sigma \right)$ 이라면, 그 마지널 랜덤벡터 중 하나인 $X_{1}$ 는 다변량정규분포 $N_{m} \left( \mu_{1} , \Sigma_{11} \right)$ 를 따른다.
증명
선형변환
다변량정규분포의 적률생성함수: $X \sim N_{p} \left( \mu , \Sigma \right)$ 의 적률생성함수는 다음과 같다. $$ M_{X} \left( \mathbf{t} \right) = \exp \left( \mathbf{t}^{T} \mu + {{ 1 } \over { 2 }} \mathbf{t}^{T} \Sigma \mathbf{t} \right) \qquad , \mathbf{t} \in \mathbb{R}^{p} $$
다변량정규분포의 적률생성함수에서 직접연역할 것이다. $\mathbf{Y}$ 의 적률생성함수는 다음과 같다. $$ \begin{align*} M_{\mathbf{Y}} \left( \mathbf{t} \right) =& E \left[ \exp \left( \mathbf{t}^{T} \mathbf{Y} \right) \right] \\ =& E \left[ \exp \left( \mathbf{t}^{T} \left( A \mathbf{X} + \mathbf{b} \right) \right) \right] \\ =& E \left[ \exp \left( \mathbf{t}^{T} \mathbf{b} \right) \right] E \left[ \exp \left( \mathbf{t}^{T} A \mathbf{X} \right) \right] \\ =& \exp \left( \mathbf{t}^{T} \mathbf{b} \right) E \left[ \exp \left( \left( A^{T} \mathbf{t} \right) ^{T} \mathbf{X} \right) \right] \\ =& \exp \left( \mathbf{t}^{T} \mathbf{b} \right) \exp \left( \left( A^{T} \mathbf{t} \right) ^{T} \left( \mu + {{ 1 } \over { 2 }} \Sigma A^{T} \mathbf{t} \right) \right) \\ =& \exp \left( \mathbf{t}^{T} \mathbf{b} \right) \exp \left( \left( A^{T} \mathbf{t} \right) ^{T} \mu + {{ 1 } \over { 2 }} \left( \mathbf{t}^{T} A \Sigma A^{T} \mathbf{t} \right) \right) \\ =& \exp \left( \mathbf{t}^{T} \left( \mathbf{b} + A \mu \right) + {{ 1 } \over { 2 }} \left( \mathbf{t}^{T} A \Sigma A^{T} \mathbf{t} \right) \right) \end{align*} $$
이는 $N_{m} \left( A \mu + \mathbf{b} , A \Sigma A^{T} \right)$ 의 적률생성함수와 같다.
■
마지널 분포
위 정리의 따름정리로써 자명하다. 항등행렬 $I_{m} \in \mathbb{R}^{m \times m}$ 과 영행렬 $O_{m(n-m)} \in \mathbb{R}^{m \times (n-m)}$ 에 대해 행렬 $A \in \mathbb{R}^{m \times n}$ 을 $$ A = \begin{bmatrix} I_{m} & O_{m(n-m)} \end{bmatrix} $$ 와 같이 정의하면 자연스럽게 $$ \mathbf{X}_{1} = A \mathbf{X} $$ 이 된다. 이렇게 벡터의 일부 성분을 탈락시키는 매핑을 내추럴 프로젝션이라 부르기도 한다.
■
Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): p183. ↩︎