logo

폰 미제스-피셔 분포 📂확률분포론

폰 미제스-피셔 분포

정의 1

유니크 모드unique mode μSp1\mu \in S^{p-1}집중concentration κ>0\kappa > 0 에 대해 다음과 같은 확률 밀도 함수를 가지는 다변량분포 vMFp(μ,κ)\text{vMF}_{p} \left( \mu , \kappa \right)폰 미제스-피셔 분포von Mises-Fisher distribution라 한다. f(x)=(κ2)p/211Γ(p/2)Ip/21(κ)exp(κμTx),xSp1 f \left( \mathbf{x} \right) = \left( {{ \kappa } \over { 2 }} \right)^{p/2-1} {{ 1 } \over { \Gamma \left( p/2 \right) I_{p/2-1} \left( \kappa \right) }} \exp \left( \kappa \mu^{T} \mathbf{x} \right) \qquad , \mathbf{x} \in S^{p-1}


설명

폰 미제스-피셔 분포는 특히 p=2p=2 일 때 폰 미제스 분포라 불리며, p=3p=3 일 때 피셔 분포fisher distribution라 한다. 폰 미제스 분포가 원 위에서의 정규분포였던 것과 유사하게 피셔 분포는 구면 위에서의 다변량정규분포가 되고, p>3p > 3 으로의 일반화 역시 기하적으로 상상하기는 어렵지만 여전히 비슷한 의미를 가진다.

방향통계학directional Statistics에서 정규분포라고 하면 자연스럽게 폰 미제스-피셔 분포부터 떠올리면 된다. 피셔 분포, 즉 p=3p=3 이라고 하면 구면 상에서의 정규분포기 때문에 적어도 행성단위(특히 지구)의 연구에서 그 쓰임새를 어렵지 않게 떠올릴 수 있다.


  1. Kim. (2019). Small sphere distributions for directional data with application to medical imaging. https://doi.org/10.1111/sjos.12381 ↩︎