logo

뉴턴-코테스 적분 공식 📂수치해석

뉴턴-코테스 적분 공식

정의 1

f:[a,b]Rf : [a,b] \to \mathbb{R}[a,b][a,b] 에서 적분가능하고 [a,b][a,b] 를 간격이 h:=ban\displaystyle h:= {{b-a} \over {n}} 로 일정한 a=x0<<xn=ba = x_{0} < \cdots < x_{n} = b 와 같은 노드 포인트들로 쪼갰다고 하자. 다음과 같이 정의된 수치적 적분 오퍼레이터 InpI_{n}^{p}뉴턴-코테스 공식이라 한다. Inp(f):=i=0nwif(xi) I_{n}^{p} (f) := \sum_{i=0}^{n} w_{i} f ( x_{i} )


  • i=0,1,,ni=0,1,\cdots , n 에 대해 xi:=a+ihx_{i} := a + i h 이고, lil_{i}라그랑주 공식에서 쓰이는 다항함수 li(x):=ij(xxjxixj)\displaystyle l_{i} (x) := \prod_{i \ne j} \left( {{ x - x_{j} } \over { x_{i} - x_{j} }} \right) 를 의미한다.
  • 가중치weight wiw_{i}wi:=abli(x)dx\displaystyle w_{i} := \int_{a}^{b} l_{i} (x) dx 와 같이 정의되어있다.

오차

fCn+2[a,b]f \in C^{n+2} [a,b] 라고 하면 Cn:={1(n+2)!0nμ2(μ1)(μn)dμ,n is even1(n+1)!0nμ(μ1)(μn)dμ,n is odd C_{n} := \begin{cases} \displaystyle {{1} \over {(n+2)! }} \int_{0}^{n} \mu^2 ( \mu - 1 ) \cdots ( \mu - n ) d \mu & , n \text{ is even} \\ \displaystyle {{1} \over {(n+1)! }} \int_{0}^{n} \mu ( \mu - 1 ) \cdots ( \mu - n ) d \mu & , n \text{ is odd} \end{cases} 와 어떤 ξ[a,b] \xi \in [a,b] 에 대해 Enp(f)={Cnhn+3f(n+2)(ξ),n is evenCnhn+2f(n+1)(ξ),n is odd E_{n}^{p} (f) = \begin{cases} C_{n} h^{n+3} f^{(n+2)} ( \xi ) & , n \text{ is even} \\ C_{n} h^{n+2} f^{(n+1)} ( \xi ) & , n \text{ is odd} \end{cases}

특수화

사다리꼴 룰11차 폴리노미얼 인터폴레이션을 쓰고 심슨 룰22차 폴리노미얼 인터폴레이션을 썼다면 당연히 pp차에 대해 일반화하는 것을 고려할 것이다. 뉴턴-코테스 적분 공식은 적분을 근사할 때 그 다항함수의 차수를 올려서 만들 수 있는 모든 룰을 포함한다.

사다리꼴 룰

  • (1) p=1p=1: I1(f):=h[f(a)+f(b)]I^{1} (f) := h [ f(a) + f(b) ]

심슨 룰

  • (2) p=2p=2: I2(f):=h3[f(a)+4f(a+b2)+f(b)]I^{2} (f) := {{h} \over {3}} \left[ f(a) + 4 f \left( {{a + b} \over {2}} \right) + f(b) \right]

383-8three-Eights rule

  • (3) p=3p=3: I3(f):=3h8[f(a)+3f(a+h)+3f(bh)+f(b)]I^{3} (f) := {{3h} \over {8}} \left[ f(a) + 3 f ( a + h ) + 3 f ( b - h ) + f(b) \right]

불즈 룰boole's rule

  • (4) p=4p=4: I4(f):=2h45[7f(a)+32f(a+h)+12f(a+b2)+32f(bh)+7f(b)]I^{4} (f) := {{2h} \over {45}} \left[ 7 f(a) + 32 f ( a + h ) + 12 f \left( {{a + b} \over {2}} \right) + 32 f(b - h) + 7 f(b) \right]

  1. Atkinson. (1989). An Introduction to Numerical Analysis(2nd Edition): p263. ↩︎