logo

t^{n}f(t)의 라플라스 변환 📂상미분방정식

t^{n}f(t)의 라플라스 변환

공식

함수 f(t)f(t)의 라플라스 변환이 L{f(t)}=0estf(t)dt=F(s)\mathcal{L} \left\{ f(t) \right\} = \displaystyle \int _{0} ^\infty e^{-st}f(t)dt = F(s)라고 하자. 그러면 tnf(t)t^{n}f(t)의 라플라스 변환은 다음과 같다.

L{tnf(t)}=(1)nF(n)(s) \mathcal{L} \left\{ t^n f(t) \right\} = (-1)^nF^{(n)}(s)

유도

우선 tnf(t)t^nf(t)라플라스 변환은 정의에 의해 다음과 같다.

0esttf(t)dt \int _{0} ^\infty e^{-st}tf(t) dt

적분 안을 잘 살펴보면 estf(t)e^{-st}f(t)ss에 대해 미분한 것과 같다는 것을 알 수 있다.

dds(estf(t))=est(t)f(t) \dfrac{d}{ds} \left( e^{-st}f(t) \right) = e^{-st}(-t)f(t)

따라서

ddsF(s)=0dds(estf(t))dt=0est(t)f(t)dt \dfrac{d}{ds}F(s)=\int_{0}^\infty \dfrac{d}{ds} \left( e^{-st}f(t) \right) dt =\int_{0}^\infty e^{-st}(-t)f(t)dt

    F(s)=L{tf(t)} \implies -F^{\prime}(s) = \mathcal{L} \left\{ tf(t) \right\}

ss에 대한 미분을 반복하면 다음의 결과를 얻는다.

F(s)=0est(t)f(t)dt=L{tf(t)}    F(s)=0est(t2)f(t)dt=L{t2f(t)}    F(3)(s)=0est(t3)f(t)dt=L{t3f(t)}    (1)nF(n)(s)=0est(tn)f(t)dt=L{tnf(t)} \begin{align*} && -F^{\prime}(s) &= \int_{0}^\infty e^{-st}(t)f(t)dt=\mathcal{ L} \left\{ tf(t) \right\} \\ \implies && F^{\prime \prime}(s) &= \int_{0}^\infty e^{-st}(t^2)f(t)dt=\mathcal{ L} \left\{ t^2f(t) \right\} \\ \implies && -F^{(3)}(s) &= \int_{0}^\infty e^{-st}(t^3)f(t)dt=\mathcal{ L} \left\{ t^3f(t) \right\} \\ && &\vdots \\ \implies && (-1)^nF^{(n)}(s) &= \int_{0}^\infty e^{-st}(t^n)f(t)dt=\mathcal{ L} \left\{ t^nf(t) \right\} \end{align*}

예시

1

f(t)=tsintf(t)=t\sin t라고 하자. L{sint}=1s2+1\mathcal{ L} \left\{ \sin t \right\}=\dfrac{1}{s^2+1}이므로

L{tsint}=2s(s2+1)2 \mathcal{ L} \left\{ t\sin t \right\}=\dfrac{-2s}{(s^2+1)^2}

2

f(t)=teatcosbtf(t)=te^{at}\cos bt라고 하자. L{eatcosbt}=s(sa)2+b2\mathcal{ L} \left\{ e^{at}\cos bt \right\}=\dfrac{s}{(s-a)^2+b^2}이므로

L{teatcosbt}=(sa)2+b22(sa)s((sa)2+b2)4 \mathcal{ L} \left\{ te^{at} \cos bt \right\}=\dfrac{(s-a)^2+b^2-2(s-a)s}{\left( (s-a)^2+b^2 \right)^4}

같이보기