logo

켄트 분포 📂확률분포론

켄트 분포

정의 1

집중concentration κ>0\kappa > 0βR\beta \in \mathbb{R}, 평균mean γ1Sp1\gamma_{1} \in S^{p-1}, 장축major Axis γ2Sp1\gamma_{2} \in S^{p-1}, 단축minor Axis γ3Sp1\gamma_{3} \in S^{p-1} 에 대해 다음과 같은 확률 밀도 함수를 가지는 다변량분포 FB5((γ1,γ2,γ3),κ,β)\text{FB}_{5} \left( \left( \gamma_{1} , \gamma_{2} , \gamma_{3} \right) , \kappa , \beta \right)켄트 분포kent distribution라 한다. f(x)=1c(κ,ν)exp(κγTx+β[(γ2Tx)2(γ3Tx)2]),xSp1 f \left( \mathbf{x} \right) = {{ 1 } \over { c \left( \kappa , \nu \right) }} \exp \left( \kappa \gamma^{T} \mathbf{x} + \beta \left[ \left( \gamma_{2}^{T} \mathbf{x} \right)^{2} - \left( \gamma_{3}^{T} \mathbf{x} \right)^{2} \right] \right) \qquad , \mathbf{x} \in S^{p-1}

특히 0β<κ/20 \le \beta < \kappa / 2 일 때 이 분포는 구면에서 계란형ovalness이고, c(κ,ν)>0c \left( \kappa , \nu \right) > 0 는 다음과 같이 Sp1f(x)dx=1\int_{S^{p-1}} f(\mathbf{x}) d \mathbf{x} = 1 이 되게끔 하는 노멀라이징 컨스턴트normalizing constant다. c(κ,β)=2πj=0Γ(j+12)Γ(j+1)β2j(2κ)2j+12I2j+12(κ) c \left( \kappa , \beta \right) = 2 \pi \sum_{j=0}^{\infty} {{ \Gamma \left( j + {{ 1 } \over { 2 }} \right) } \over { \Gamma \left( j+1 \right) }} \beta^{2j} \left( {{ 2 } \over { \kappa }} \right)^{2j + {{ 1 } \over { 2 }}} I_{2j + {{ 1 } \over { 2 }}} \left( \kappa \right)


설명

켄트 분포는 구면에서 타원형의 등고선contour를 그리는 다변량정규분포, 즉 자명하지 않은 공분산행렬이 주어진 것 같은 기하적 의미를 가진다. 언뜻 생각하기엔 그냥 평면에서 타원을 그려놓고 원으로 옮기면 그만일 것 같지만, 정의에서 소개된 것처럼 복잡한 수식으로 모델링하지 않으면 구면 위에서는 왜곡이 일어난다.

분포의 모수에서 정의되는 이심률eccentricity 2β/κ2 \beta / \kappa 은 등고선이 얼마나 원과 다른지를 나타낸다.


  1. Kasarapu. (2015). Modelling of directional data using Kent distributions. https://doi.org/10.48550/arXiv.1506.08105 ↩︎