구면조화함수의 규격화
📂수리물리 구면조화함수의 규격화 정리 규격화된 구면조화함수는 아래와 같다.
Y l m ( θ , ϕ ) = 2 l + 1 4 π ( l − m ) ! ( l + m ) ! P l m ( cos θ ) e i m ϕ
Y_{l}^{m}(\theta,\phi)=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_{l}^{m}(\cos\theta)e^{im\phi}
Y l m ( θ , ϕ ) = 4 π 2 l + 1 ( l + m )! ( l − m )! P l m ( cos θ ) e im ϕ
∇ 2 f = 1 r 2 ∂ ∂ r ( r 2 ∂ f ∂ r ) + 1 r 2 sin θ ∂ ∂ θ ( sin θ ∂ f ∂ θ ) + 1 r 2 sin 2 θ ∂ 2 f ∂ 2 ϕ = 0
\nabla ^2 f = \frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2\frac{\partial f}{\partial r} \right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left( \sin\theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial^2 \phi}=0
∇ 2 f = r 2 1 ∂ r ∂ ( r 2 ∂ r ∂ f ) + r 2 sin θ 1 ∂ θ ∂ ( sin θ ∂ θ ∂ f ) + r 2 sin 2 θ 1 ∂ 2 ϕ ∂ 2 f = 0
f ( r , θ , ϕ ) = R ( r ) Θ ( θ ) Φ ( ϕ )
f(r,\theta,\phi)=R(r)\Theta (\theta)\Phi (\phi)
f ( r , θ , ϕ ) = R ( r ) Θ ( θ ) Φ ( ϕ )
설명 구면좌표계에 대한 라플라스 방정식 에서 극각 θ \theta θ , 방위각 ϕ \phi ϕ 에 대한 해를 구면조화함수 라 한다.
Θ ( θ ) Φ ( ϕ ) = Y l m ( θ , ϕ ) = e i m ϕ P l m ( cos θ )
\Theta (\theta)\Phi (\phi)=Y_{l}^{m}(\theta,\phi)=e^{im\phi}P_{l}^{m}(\cos \theta)
Θ ( θ ) Φ ( ϕ ) = Y l m ( θ , ϕ ) = e im ϕ P l m ( cos θ )
양자역학에서 구면조화함수를 파동함수로서 다루려면 규격화 를 해야한다.
∭ ∣ R ( r ) Θ ( θ ) Φ ( ϕ ) ∣ 2 r 2 sin θ d r d θ d ϕ = ∫ 0 ∞ ∣ R ( r ) ∣ 2 r 2 d r ∫ 0 2 π ∫ 0 π ∣ Y l m ( θ , ϕ ) ∣ 2 sin θ d θ d ϕ = 1
\iiint |R(r)\Theta (\theta) \Phi (\phi)|^{2}r^{2}\sin \theta dr d \theta d\phi=\int_{0}^{\infty}|R(r)|^{2}r^{2}dr\int_{0}^{2\pi}\int_{0}^{\pi}|Y_{l}^{m}(\theta,\phi)|^{2}\sin\theta d\theta d\phi=1
∭ ∣ R ( r ) Θ ( θ ) Φ ( ϕ ) ∣ 2 r 2 sin θ d r d θ d ϕ = ∫ 0 ∞ ∣ R ( r ) ∣ 2 r 2 d r ∫ 0 2 π ∫ 0 π ∣ Y l m ( θ , ϕ ) ∣ 2 sin θ d θ d ϕ = 1
여기서 구면조화함수인 각도성분만 따로 빼고 규격화 상수를 C C C 라고 하자. 그러면
∣ C ∣ 2 ∫ 0 2 π ∫ 0 π ∣ Y l m ( θ , ϕ ) ∣ 2 sin θ d θ d ϕ = 1 ⟹ ∣ C ∣ 2 ∫ 0 2 π ∣ e i m ϕ ∣ 2 d ϕ ∫ 0 π ∣ P l m ( cos θ ) ∣ 2 sin θ d θ = 1 ⟹ 2 π ∣ C ∣ 2 ∫ 0 π ∣ P l m ( cos θ ) ∣ 2 sin θ d θ = 1
\begin{align*}
&&& |C|^{2}\int_{0}^{2\pi}\int_{0}^{\pi}|Y_{l}^{m}(\theta,\phi)|^{2}\sin\theta d\theta d\phi=1
\\ \implies &&&|C|^{2}\int_{0}^{2\pi}|e^{im\phi}|^{2} d\phi\int_{0}^{\pi}|P_{l}^{m}(\cos \theta)|^{2}\sin\theta d\theta =1
\\ \implies &&&2\pi|C|^{2}\int_{0}^{\pi}|P_{l}^{m}(\cos \theta)|^{2}\sin\theta d\theta =1
\end{align*}
⟹ ⟹ ∣ C ∣ 2 ∫ 0 2 π ∫ 0 π ∣ Y l m ( θ , ϕ ) ∣ 2 sin θ d θ d ϕ = 1 ∣ C ∣ 2 ∫ 0 2 π ∣ e im ϕ ∣ 2 d ϕ ∫ 0 π ∣ P l m ( cos θ ) ∣ 2 sin θ d θ = 1 2 π ∣ C ∣ 2 ∫ 0 π ∣ P l m ( cos θ ) ∣ 2 sin θ d θ = 1
이때 θ \theta θ 에 대한 적분은 버금 르장드르 다항식의 직교성 에 의해 2 2 l + 1 ( l + m ) ! ( l − m ) ! \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} 2 l + 1 2 ( l − m )! ( l + m )! 이므로
C = 2 l + 1 4 π ( l − m ) ! ( l + m ) !
C=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
C = 4 π 2 l + 1 ( l + m )! ( l − m )!
따라서 규격화된 구면조화함수는 아래와 같다.
Y l m ( θ , ϕ ) = 2 l + 1 4 π ( l − m ) ! ( l + m ) ! P l m ( cos θ ) e i m ϕ
Y_{l}^{m}(\theta,\phi)=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_{l}^{m}(\cos\theta)e^{im\phi}
Y l m ( θ , ϕ ) = 4 π 2 l + 1 ( l + m )! ( l − m )! P l m ( cos θ ) e im ϕ
보통 양자역학에서 구면조화함수라고 하면 별 다른 말이 없어도 규격화되어있다는 것을 가정한다.