logo

ネットワーク理論における固有ベクトル中心性 📂グラフ理論

ネットワーク理論における固有ベクトル中心性

定義 1

ネットワーク (V,E)\left( V , E \right)隣接行列 AAスペクトル半径 λ1\lambda_{1} に対応する固有ベクトル v1\mathbf{v}_{1}ii番目の成分をii番目のノード viv_{i}固有ベクトル中心性eigenvector Centralityと言う。

Description

Unlike degree centrality or closeness centrality, which can be intuitively understood from their formulae, Eigenvector Centrality may be hard to comprehend without a background in mathematics.

Intuitive Meaning

A detailed explanation requires looking into its derivation, but simply put, it represents the influence a node has within a network. This influence, somewhat ambiguous, cannot be explained merely through relations with adjacent nodes, necessitating the complex concept of eigenvectors to overcome the limitations of measures like degree centrality.

Derivation

Let’s assume that each node viVv_{i} \in V is assigned some form of centrality xix_{i}. While it’s not clear yet how this centrality is calculated, we assume that it is valued higher if the surrounding centralities are larger. This mirrors the way celebrities are cast in shows not randomly but in matching grades and fields or how researchers tend to collaborate with those in similar studies. Thus, xix_{i} can be expressed as the sum of the centralities {xj}\left\{ x_{j} \right\} of adjacent nodes {vj}\left\{ v_{j} \right\}. xi=jAijxj x_{i} = \sum_{j} A_{ij} x_{j} However, since xix_{i} itself can change, making this calculation seems problematic. For now, let’s add a variable for the number of iterations tt and write it as: xi(t+1)=jAijxj(t) x_{i} (t+1) = \sum_{j} A_{ij} x_{j} (t) This can soon be represented as a matrix with respect to: x(t+1)=Ax(t) \mathbf{x} (t+1) = A \mathbf{x} (t) This system is a Deterministic System dependent on x(0)\mathbf{x} (0). Although there’s no particular reason why the initial point of our desired centrality vector x(t)\mathbf{x} (t) should be x(0)\mathbf{x} (0), let’s set it as a linear combination of the eigenvalues in AA for some set of constants {cj}R\left\{ c_{j} \right\} \subset \mathbb{R}. x(0)=c1v1++cnvn=j=1ncjvj \mathbf{x} (0) = c_{1} \mathbf{v}_{1} + \cdots + c_{n} \mathbf{v}_{n} = \sum_{j=1}^{n} c_{j} \mathbf{v}_{j} Assuming the set of eigenvectors {vj}\left\{ \mathbf{v}_{j} \right\} is indexed the same as the eigenvalues of AA sorted in absolute value order {λj}\left\{ \lambda_{j} \right\}, then for the n-th eigenvector vj\mathbf{v}_{j}, the eigenvalue Avj=λjvj    Atvj=λjtvj A \mathbf{v}_{j} = \lambda_{j} \mathbf{v}_{j} \implies A^{t} \mathbf{v}_{j} = \lambda_{j}^{t} \mathbf{v}_{j} holds, which means: x(t)=Atx(0)=Atj=1ncjvj=j=1ncjAtvj=j=1ncjλjtvj=λ1tj=1ncj(λjλ1)tvj \begin{align*} \mathbf{x} (t) =& A^{t} \mathbf{x} (0) \\ =& A^{t} \sum_{j=1}^{n} c_{j} \mathbf{v}_{j} \\ =& \sum_{j=1}^{n} c_{j} A^{t} \mathbf{v}_{j} \\ =& \sum_{j=1}^{n} c_{j} \lambda_{j}^{t} \mathbf{v}_{j} \\ =& \lambda_{1}^{t} \sum_{j=1}^{n} c_{j} \left( {{ \lambda_{j} } \over { \lambda_{1} }} \right) ^{t} \mathbf{v}_{j} \end{align*} Since these eigenvalues {λj}\left\{ \lambda_{j} \right\} are sorted by absolute value, for j1j \ne 1, it holds that (λj/λ1)<1\left( \lambda_{j} / \lambda_{1} \right) < 1 and with sufficiently large tt, the following approximation holds: x(t)=λ1tc1(λ1λ1)tv1+λ1tc2(λ2λ1)tv2++λ1tcn(λnλ1)tvnλ1tc1v1+0++0 \begin{align*} \mathbf{x} (t) =& \lambda_{1}^{t} c_{1} \left( {{ \lambda_{1} } \over { \lambda_{1} }} \right) ^{t} \mathbf{v}_{1} + \lambda_{1}^{t} c_{2} \left( {{ \lambda_{2} } \over { \lambda_{1} }} \right) ^{t} \mathbf{v}_{2} + \cdots + \lambda_{1}^{t} c_{n} \left( {{ \lambda_{n} } \over { \lambda_{1} }} \right) ^{t} \mathbf{v}_{n} \\ \approx & \lambda_{1}^{t} c_{1} \mathbf{v}_{1} + 0 + \cdots + 0 \end{align*} What matters here is that the centrality vector x(t)\mathbf{x} (t) obtained after tt iterations ultimately scales with the eigenvector corresponding to λ1\lambda_{1}, essentially [x1xn]=x(t)v1 \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} = \mathbf{x} (t) \sim \mathbf{v}_{1} Hence, we bypass the ‘repeat for tt times’ step and directly use the n-th component of the eigenvector v1\mathbf{v}_{1} as the centrality xix_{i} of the node we wanted to calculate initially.

See Also

Various Centralities of a Network


  1. Newman. (2010). Networks: An Introduction: p170. ↩︎