logo

信頼区間 📂数理統計学

信頼区間

定義 1

パラメータ空間 Θ\Theta の部分集合 CΘC \subset \Theta が、有意水準 α\alpha に対して P(θCy)1αP ( \theta \in C | y ) \ge 1 - \alpha を満たすとき、CCデータyyが与えられた時のθ\thetaに対する100(1α)100(1 - \alpha) % 信頼区間credible Intervalという。

説明

ベイズ推定における区間推定とは、パラメータ θ\theta を含む可能性が高い区間を見つけることである。このようにして見つかる「信頼区間」とは、頻繁度主義者にとっての信頼区間に対応する概念である。

式の理解

式は少し難しく書かれているが、分解してみよう。積分形で表せば、 P(θCy)=θCp(θy)dθ P ( \theta \in C | y ) = \int_{ \theta \in C} p ( \theta | y) d \theta 理解を助けるため、単に有意水準をα=0.05\alpha = 0.05とした場合、 θCp(θy)dθ0.95 \int_{ \theta \in C} p ( \theta | y) d \theta \ge 0.95 CC を信頼区間とする。もっと馴染み深い表現に変えてC=[a,b]C = [a,b] と書けば、 abp(θy)dθ0.95 \int_{a}^{b} p ( \theta | y) d \theta \ge 0.95 である。以下の二つの図で、塗りつぶされた部分の面積が0.950.95より大きいか等しければ、この積分区間CCは何であれ信頼区間になる。

しかし、信頼区間の長さが短いほど正確なので、条件を満たす信頼区間の中では最小のものが良い。従って、どちらかを選ばなければならない場合、右側が選ばれ、実際の推定ではもっと正確な方法を使用する。

20181111\_124207.png

保守的な定義

信頼区間が正確にP(θCy)=1αP ( \theta \in C | y ) = 1 - \alphaでなくP(θCy)1αP ( \theta \in C | y ) \ge 1 - \alphaと定義された理由は、単に安全を期するためである。計算していると、必ずしも正確に一致させることができない場合もあるため、いっそ区間を若干広げておくほうが良い。

これを見ていると、頻繁度主義者の信頼区間と何が違うのか、なぜ新たに定義する必要があるのか疑問に思うかもしれない。しかし、微妙に見えるこの違いこそ、ベイズを魅力的にする核心要素の一つである。


  1. 김달호. (2013). R과 WinBUGS를 이용한 베이지안 통계학: p152. ↩︎