偏微分方程式におけるラグランジアンとオイラー・ラグランジュ方程式
定義1
ラグランジアンLagrangian
スムース関数 $L : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$が与えられたとしよう。これをラグランジアンと呼び、以下のように表記する。
$$ L = L(v,x)=L(v_{1}, \dots, v_{n}, x_{1}, \dots, x_{n}) \quad v,x\in \mathbb{R}^{n} \\ D_{v}L = (L_{v_{1}}, \dots, L_{v_{n}}), \quad D_{x}L = (L_{x_{1}}, \dots, L_{x_{n}}) $$
変数を$v, x$と書く理由は、実際に物理学で各変数が速度と位置を意味するからだ。
アクションaction、許容クラスadmissible class
固定された二点$x,y \in \mathbb{R}^{n}$と時間$t>0$に対して、以下のように定義される汎関数$I$をアクションと言う。
$$ I[ \mathbf{w}(\cdot)] := \int_{0}^tL(\dot{\mathbf{w}}(s), \mathbf{w}(s) ) ds \quad \left( \dot{ }=\dfrac{d}{ds}\right) $$
この際、関数$\mathbf{w}(\cdot)=\big( w^1(\cdot), \cdots, w^n(\cdot) \big)$は、以下のように定義される許容クラス$\mathcal{A}$の要素である。
$$ \mathcal{A} := \left\{ \mathbf{w}(\cdot) = \in C^2 \big([0,t];\mathbb{R}^n \big) \ \big| \ \mathbf{w}(0)=y, \mathbf{w}(t)=x\right\} $$
つまり、$\mathcal{A}$は時間が$0$から$t$まで流れる間、位置が$y$から始まり$x$で終わる、2回連続的に微分可能な全ての経路を集めた集合を意味する。
説明
変分法calculus of variationsの目的は、アクション$I$の積分値が最小になるような$\mathbf{x} \in \mathcal{A}$を見つけることである。この時の$\mathbf{x}$を$I$の最小化器minimiserと呼ぶ。
$$ I[ \mathbf{x} (\cdot) ] = \inf_{\mathbf{w}(\cdot)\in \mathcal{A}} I[\mathbf{w}(\cdot)] $$
このような$\mathbf{x}$を求める理由は、ラグランジアンのアクションを最小化する経路が実際に物体が運動する経路であるからである。つまり、物体の運動について知りたいからであり、本質的には$F=ma$を解くことと同じだ。古典力学では、ラグランジアンは具体的に運動エネルギーとポテンシャルエネルギーの差として与えられる。
最小化器の判定に関して、以下の定理がある。
定理
$\mathbf{x}(\cdot) \in \mathcal{A}$をアクション$I$の最小化器と仮定しよう。すると、$\mathbf{x}(\cdot)$は以下の式を満たす。
$$ -\dfrac{d}{ds} \Big[ D_{v}L\big( \dot{\mathbf{x}}(s), \mathbf{x}(s) \big) \Big] + D_{x}L\big( \dot{\mathbf{x}}(s), \mathbf{x}(s)\big)=0 \quad (0 \le s \le t) $$
この式をオイラー-ラグランジュ方程式Euler-Lagrange equationsと呼ぶ。
注意すべき点は、最小化器はオイラー-ラグランジュ方程式を満たすが、オイラー-ラグランジュ方程式を満たすからといって最小化器であるわけではないことだ。最小値を持つ点で微分すると$0$になるが、微分して$0$になる点が最小値を持つわけではないのと同じだ。このような意味で、オイラー-ラグランジュ方程式を満たす$\mathbf{x}(\cdot) \in \mathcal{A}$を$I$の臨界点critical pointと呼ぶ。よって、最小化器は臨界点だが、臨界点であるからといって最小化器であるわけではない。
証明
$\mathbf{x} \in \mathcal{A}$をアクション$I$の最小化器と仮定しよう。
ステップ 1.
関数$\mathbf{y} : [0,t] \to \mathbb{R}^{n}, \mathbf{y}(\cdot) = (y^1(\cdot), \cdots, y^n(\cdot) )$が以下の式を満たすスムース関数であるとしよう。
$$ \begin{equation} \mathbf{y}(0)=\mathbf{y}(t)=\mathbf{0} \label{eq1} \end{equation} $$
そして任意の$\tau \in \mathbb{R}$に対して$\mathbf{w}(\cdot)$を以下のように定義しよう。
$$ \mathbf{w}(\cdot) : = \mathbf{x}(\cdot) + \tau \mathbf{y}(\cdot) \in \mathcal{A} $$
すると、$\mathbf{w}$は$\mathbf{x}$と同じ始点と終点の値を持ち、その間で$\tau \mathbf{y}(\cdot)$だけ異なる経路を持つ。また、$\mathbf{x}(\cdot)$は$I$の最小化器であるため、以下の式が成立する。
$$ I[\mathbf{x}(\cdot)] \le I[\mathbf{w}(\cdot)]=I[\mathbf{x}(\cdot) + \tau \mathbf{y}(\cdot)] =: i(\tau) $$
また、関数$i$は最小化器の定義により$\tau=0$で最小値を持つ。従って、$i$の微分が存在すれば、それは$i^{\prime}(0)=0$である。
ステップ 2.
上で定義した通り、$i$は以下の通りである。
$$ i(\tau) = \int_{0} ^t L\big( \dot{\mathbf{x}}(s) + \tau \dot{\mathbf{y}}(s), \mathbf{x}(s)+ \tau \mathbf{y}(s) \big)ds $$
$L$、$\mathbf{y}$はスムース関数であるため、$i$の微分を行うと以下のようになる。
$$ i^{\prime}(\tau) = \int_{0}^t \sum_{i=1}^{n} \left[ L_{v_{i}} ( \dot{\mathbf{x}} + \tau \dot{\mathbf{y}}, \mathbf{x}+ \tau \mathbf{y} )\dot{y}^i + L_{x_{i}} ( \dot{\mathbf{x}} + \tau \dot{\mathbf{y}}, \mathbf{x}+ \tau \mathbf{y} ) y^i \right] ds $$
$\tau=0$を代入すると、**ステップ 1.**の結果により以下を得る。
$$ 0=i^{\prime}(0) = \int_{0}^t \sum_{i=1}^{n} \left[ L_{v_{i}} ( \dot{\mathbf{x}} , \mathbf{x})\dot{y}^i + L_{x_{i}} ( \dot{\mathbf{x}} , \mathbf{x} )y^i \right] ds $$
$L_{v_{i}}\dot{y}^i$の各項に部分積分を適用すると、仮定$\mathbf{y}(0)=\mathbf{y}(t)=\mathbf{0}$によって以下を得る。
$$ \int_{0}^t L_{v_{i}}\dot{y}^i ds = \left. L_{v_{i}}y^i \right]_{0}^t- \int_{0}^t \dfrac{d}{ds}L_{v_{i}}y^i=\int_{0}^t-\dfrac{d}{ds} L_{v_{i}}y^i $$
従って、以下の式が成立する。
$$ 0=i^{\prime}(0) = \sum_{i=1}^{n} \int_{0}^t \left[ -\dfrac{d}{ds} L_{v_{i}} ( \dot{\mathbf{x}} , \mathbf{x})\ + L_{x_{i}} ( \dot{\mathbf{x}} , \mathbf{x} ) \right]y^i ds $$
**ステップ 2.**の結果は、$\eqref{eq1}$を満たす全てのスムース関数$\mathbf{y} : [0,t] \to \mathbb{R}^n$に対して成り立つ。よって、括弧内の値は$0$でなければならない。従って、以下が成立する。
$$ -\dfrac{d}{ds} L_{v_{i}}( \dot{\mathbf{x}}, \mathbf{x} ) +L_{x_{i}}( \dot{\mathbf{x}}, \mathbf{x}) =0 $$
■
この結果から、ハミルトン方程式を導き出せる。
参照
Lawrence C. Evans, Partial Differential Equations (第2版, 2010), p115-117 ↩︎