logo

Mean of Function Values 📂Analysis

Mean of Function Values

Definition

The average value of a function between [a, b][a,\ b] and f(x)f(x) is equivalent to dividing the integral of the function over the interval by the length of the interval.

1baabf(x)dx \dfrac{1}{b-a}\int_{a}^bf(x)dx

Derivation

Let’s denote a partition of the interval [a, b][a,\ b] as PP.

P={x1, x2, , xn} P=\left\{ x_{1},\ x_{2},\ \cdots ,\ x_{n} \right\}

In this case, a=x1<x2<<xn=ba=x_{1} < x_{2} < \cdots < x_{n}=b and the distance between each point is the same. Also, Δx=xi+1xi\Delta x=x_{i+1}-x_{i}. We seek to approximate the average value of f(x)f(x) by dividing f(xi)f(x_{i})’s sum by nn.

f(x1)+f(x2)++f(xn)n \dfrac{ f(x_{1}) + f(x_{2}) + \cdots +f(x_{n}) } {n}

This implies that as nn increases, it will become closer to the average of the function values. Multiplying both numerator and denominator by Δx\Delta x gives the following.

(f(x1)+f(x2)++f(xn))ΔxnΔx \dfrac{\Big( f(x_{1}) + f(x_{2}) + \cdots +f(x_{n}) \Big)\Delta x} {n \Delta x}

Since nΔx=ban\Delta x=b-a, it follows that:

(f(x1)+f(x2)++f(xn))Δxba \dfrac{\Big( f(x_{1}) + f(x_{2}) + \cdots +f(x_{n}) \Big)\Delta x} {b-a}

Taking the limit where nn \rightarrow \infty and Δx0\Delta x \rightarrow 0, the numerator becomes abf(x)dx\int_{a}^bf(x)dx.

1baabf(x)dx \dfrac{1}{b-a}\int_{a}^bf(x)dx

Example

The average of one period of a trigonometric function is 00.

  • Cosine Function

    The average over one period of cos(kx)\cos (kx) is as follows: 02πkcos(kx)dx=1k[sin(kx)]02πk=1k(sin2πsin0)=0 \int_{0}^\frac{2\pi}{k} \cos(kx)dx = \dfrac{1}{k}\left[ \sin(kx)\right]_{0}^{\frac{2\pi}{k}} =\dfrac{1}{k}(\sin 2\pi -\sin 0 ) =0

  • Sine Function

    The average over one period of sin(kx)\sin (kx) is as follows: 02πksin(kx)dx=1k[cos(kx)]02πk=1k(cos2πcos0)=0 \int_{0}^\frac{2\pi}{k} \sin(kx)dx = \dfrac{-1}{k}\left[ \cos(kx)\right]_{0}^{\frac{2\pi}{k}} =\dfrac{-1}{k}(\cos 2\pi -\cos 0 ) =0

See Also