logo

Proof of Jordan's Lemma 📂Complex Anaylsis

Proof of Jordan's Lemma

Theorem 1

When the semicircle Γ\Gamma is represented as z(θ)=Reiθ,0θπz(\theta) = R e^{i \theta} , 0 \le \theta \le \pi, if the function f:CCf: \mathbb{C} \to \mathbb{C} is continuous on Γ\Gamma and limzf(z)=0\displaystyle \lim_{z \to \infty} f(z) = 0, then for any positive mR+m \in \mathbb{R}^{+}, limRΓemizf(z)dz=0 \lim_{R \to \infty} \int_{\Gamma} e^{m i z } f(z) dz = 0

Explanation

The pronunciation [Jordan] is not Konglish but comes from French. It’s a lemma, so it’s difficult to grasp its meaning immediately, and it’s enough to know that it’s used in various integration techniques. The proof may seem tedious, but it’s surprisingly straightforward, so it’s not a bad idea to study it properly at least once.

Fourier Transform

Fourier Transform: Ff(ξ):=f(x)eiξxdx\mathcal{F}f(\xi):=\int _{-\infty} ^{\infty}f(x)e^{-i \xi x}dx

If ξ=m>0-\xi = m > 0 and the continuous function f:RRf : \mathbb{R} \to \mathbb{R} satisfies limxf(x)=0\lim_{x \to \infty} f(x) = 0, then formally, the integrand in Jordan’s lemma resembles the form appearing in the Fourier transform.

Proof

First, Γemizdz=0πemizdz0πemiRcosθemRsinθiReiθdθ=R0πemRsinθdθ=2R0π/2emRsinθdθ \begin{align*} \left| \int_{\Gamma} e^{m i z} dz \right| =& \left| \int_{0}^{\pi} e^{m i z} dz \right| \\ \le & \int_{0}^{\pi} \left| e^{m i R \cos{\theta}} \right| \left| e^{- m R \sin{\theta}} \right| \left| i R e^{i \theta} \right| d \theta \\ =& R \int_{0}^{\pi} e^{-m R \sin \theta} d \theta \\ =& 2 R \int_{0}^{\pi/2} e^{-m R \sin \theta} d \theta \end{align*} will be shown to be bounded. Since 0=sin00 = \sin 0 and 2π=ddθ2θπθ=0<ddθsinθθ=0=1 {{ 2 } \over { \pi }} = \left. {{ d } \over { d \theta }} {{ 2 \theta } \over { \pi }} \right|_{\theta = 0} < \left. {{ d } \over { d \theta }} \sin \theta \right|_{\theta = 0} = 1 therefore, in θ[0,π2]\displaystyle \theta \in \left[ 0 , {{\pi} \over {2}} \right], 2πθsinθ\displaystyle {{2} \over {\pi}} \theta \le \sin{\theta} is. If it goes up to an exponential function, then emRsinθemR2πθ\displaystyle e^{-m R \sin \theta} \le e^{-m R {{2} \over {\pi}} \theta }, therefore, Γemizdz2R0π/2emR2πθdθ=2R[πmR2emR2πθ]0π/2=πm(1emR)<πm \begin{align*} \left| \int_{\Gamma} e^{m i z} dz \right| \le & 2 R \int_{0}^{\pi/2} e^{-m R {{2} \over {\pi}} \theta} d \theta \\ =& 2R \left[ - {{ \pi } \over { mR 2 }} e^{-m R {{2} \over {\pi}} \theta} \right]_{0}^{ \pi / 2} \\ =& {{\pi} \over {m}} (1 - e^{-mR} ) \\ <& {{\pi} \over {m}} \end{align*} namely, it has been shown to be bounded. From the assumption, since ff is continuous on Γ\Gamma and limzf(z)=0\displaystyle \lim_{z \to \infty} f(z) = 0, for any ε>0\varepsilon >0, 1z<δ    f(z)<ε \left| {{1} \over {z}} \right| < \delta \implies |f(z)| < \varepsilon a δ>0\delta > 0 that satisfies this will exist. Since z=R|z|=R on Γ\Gamma, summarizing for RR, 1R<δ    f(z)<ε {{1} \over {R}} < \delta \implies |f(z)| < \varepsilon namely, for any ε>0\varepsilon >0, 1R<δ    Γemizf(z)dz<εΓemizdz<επm {{1} \over {R}} < \delta \implies \left| \int_{\Gamma} e^{m i z} f(z) dz \right| < \varepsilon \left| \int_{\Gamma} e^{m i z} dz \right| < {{ \varepsilon \pi} \over {m}} a δ>0\delta > 0 that satisfies this exists, and the following is obtained: limRΓemizf(z)dz=0 \lim_{R \to \infty} \int_{\Gamma} e^{m i z } f(z) dz = 0


  1. Osborne (1999). Complex variables and their applications: p166. ↩︎