logo

Matrix Representation of Operators in Quantum Mechanics 📂Quantum Mechanics

Matrix Representation of Operators in Quantum Mechanics

Build-up

Let’s consider two unit vectors x^=(1,0)\widehat{\mathbf{x}} = (1, 0) and y^=(0,1)\widehat{\mathbf{y}} = (0, 1) in a 2-dimensional space. The coordinate vector of an arbitrary point (a,b)(a, b) in this space can be expressed as a linear combination of these two unit vectors as follows.

(a,b)=a(1,0)+b(0,1)    [ab]=a[10]+b[01] (a, b) = a(1, 0) + b(0, 1) \implies \begin{bmatrix} a \\ b \end{bmatrix} = a\begin{bmatrix} 1 \\ 0 \end{bmatrix} + b\begin{bmatrix} 0 \\ 1 \end{bmatrix}

This expression is possible because the set of unit vectors {x^,y^}\left\{ \widehat{\mathbf{x}}, \widehat{\mathbf{y}} \right\} contains orthogonal vectors equal to the number of dimensions. Such a set is mathematically called a basis. In other words, if a basis is given, all vectors in the space can be represented as a linear combination of these basis vectors. The condition for being a basis is that the number of elements equals the number of dimensions and they must be composed of orthogonal vectors. Hence, they do not need to be unit vectors like x^\widehat{\mathbf{x}} and y^\widehat{\mathbf{y}}.

For example, let’s consider two orthogonal vectors v=(1,2)\mathbf{v} = (-1, 2) and u=(2,1)\mathbf{u} = (2, 1). Then the coordinate vector of point (a,b)(a, b) is as follows:

(a,b)=a+2b5(1,2)+2a+b5(2,1)    [a+2b52a+b5]=a+2b5[10]+2a+b5[01] (a, b) = \dfrac{-a + 2b}{5}(-1, 2) + \dfrac{2a+b}{5}(2, 1) \implies \begin{bmatrix} \dfrac{-a + 2b}{5} \\ \dfrac{2a+b}{5} \end{bmatrix} = \dfrac{-a + 2b}{5}\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \dfrac{2a+b}{5}\begin{bmatrix} 0 \\ 1 \end{bmatrix}

It is known that the coordinates of each vector in the basis are [10]\begin{bmatrix} 1 \\ 0 \end{bmatrix} and [01]\begin{bmatrix} 0 \\ 1 \end{bmatrix}, respectively. Now, let’s assume an arbitrary matrix A=[abcd]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} is given. To obtain the component in the first row and second column of this matrix, you multiply the coordinates of the first and second basis vectors, respectively, as follows AA.

[10][abcd][01]=b \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} 0 \\ 1 \end{bmatrix} = b

If we notate the first basis vector as 1\ket{1} and the second basis vector as 2\ket{2}, the ijij component of the matrix AA can be expressed as follows:

[Aij]=iAj [A_{ij}] = \bra{i}A\ket{j}

This notation is called Dirac notation. The core points above are fourfold:

  1. If there are orthogonal vectors equal to the number of dimensions, all points can be expressed in coordinates as a linear combination of these vectors. (Such a set is called a basis)
  2. The coordinates of a point can vary depending on the basis.
  3. The coordinate vector of the ii-th vector in the basis is as follows: [010]i-th row \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \gets i\text{-th row}
  4. If the coordinates of the ii-th basis vector are notated as i\ket{i}, the ijij component of the matrix is as follows: [Aij]=iAj [A_{ij}] = \bra{i}A\ket{j}

Explanation

In quantum mechanics, operators (corresponding to different eigenvalues) have eigenfunctions that are all orthogonal. Thus, the set of eigenfunctions forms a basis. Using the coordinate vectors of these eigenfunctions, the action of the operator on these eigenfunctions can be expressed as matrix multiplication. For example, let’s consider the Hamiltonian operator HH and assume the following eigenvalue equation holds.

H1=h11H2=h22 H\ket{1} = h_{1} \ket{1} \\ H\ket{2} = h_{2} \ket{2} \\

Then the above eigenvalue equation can be expressed as the following matrix multiplication.

[h100h2][10]=[h10]=h1[10][h100h2][01]=[0h2]=h2[01] \begin{bmatrix} h_{1} & 0 \\ 0 & h_{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} h_{1} \\ 0 \end{bmatrix} = h_{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\[1em] \begin{bmatrix} h_{1} & 0 \\ 0 & h_{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ h_{2} \end{bmatrix} = h_{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix}

Therefore, [h100h2]\begin{bmatrix} h_{1} & 0 \\ 0 & h_{2} \end{bmatrix} is the matrix corresponding to the Hamiltonian HH. The method to obtain each component of this matrix is, as explained above, multiplying the eigenvectors front and back.

[Hij]=iHj [H_{ij}] = \bra{i}H\ket{j}

Example

Harmonic Oscillator

  • Energy Operator: H=w(120000032000005200000720000092) H=\hbar w \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0& \cdots \\ 0 & \frac{3}{2} & 0 & 0 &0 & \cdots \\ 0 & 0 & \frac{5}{2} & 0 & 0 & \cdots \\ 0 & 0 & 0 & \frac{7}{2} & 0 & \cdots \\ 0 & 0& 0& 0 & \frac{9}{2} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}

  • Ladder Operator:

    a+=(0000010000020000030000040) a_{+}=\begin{pmatrix} 0 & 0 & 0 & 0 & 0& \cdots \\ \sqrt{1} & 0 & 0 & 0 &0 & \cdots \\ 0 & \sqrt{2} &0 & 0 & 0 & \cdots \\ 0 & 0 & \sqrt{3} &0 & 0 & \cdots \\ 0 & 0& 0& \sqrt{4} &0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} a=(0100000200000300000400000) a_{-}=\begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & 0& \cdots \\ 0 & 0 & \sqrt{2} & 0 &0 & \cdots \\ 0 & 0 & 0 & \sqrt{3} & 0 & \cdots \\ 0 & 0 & 0 & 0 & \sqrt{4} & \cdots \\ 0 & 0& 0& 0& 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}

Angular Momentum Operator

When =1\ell = 1,

  • Angular Momentum Operator:

    Lz=(100000001) L_{z}=\hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} Lx=2(010101010),Ly=2(0i0i0i0i0) L_{x}=\dfrac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} ,\qquad L_{y}=\dfrac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -\i & 0 \\ \i & 0 & -\i \\ 0 & \i & 0 \end{pmatrix}

  • Ladder Operator:

    L+=(020002000),L=(000200020) L_{+}=\hbar \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix} ,\qquad L_{-}=\hbar \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} &0 & 0 \\ 0 & \sqrt{2} &0 \end{pmatrix}