logo

Quadratic Form 📂Linear Algebra

Quadratic Form

Definition

VV is called a nndimensional vector space. For a given constant aijR(or C)a_{ij} \in \mathbb{R}(\text{or } \mathbb{C}), the following second order homogeneous function A:VR(or C)A : V \to \mathbb{R}(\text{or } \mathbb{C}) is called a quadratic form.

A(x):=i,j=1naijxixj,(aij=aji) A(\mathbf{x}) := \sum\limits_{i,j=1}^{n} a_{ij}x_{i}x_{j},\qquad (a_{ij} = a_{ji})

Here, x=[x1xn]T\mathbf{x} = \begin{bmatrix} x_{1} & \cdots & x_{n} \end{bmatrix}^{T} holds. The term iji \ne j for aijxixja_{ij}x_{i}x_{j} is called the cross product terms.

Explanation

According to the definition, A(λx)=λ2A(x)A(\lambda \mathbf{x}) = \lambda^{2} A(\mathbf{x}) holds.

Matrix Form

Let AA be a n×nn\times n symmetric matrix A=[aij]A = \begin{bmatrix} a_{ij} \end{bmatrix}. The quadratic form of matrix AA, denoted by QA(x)Q_{A}(\mathbf{x}), is called quadratic form associated with A.

QA(x)=xTAx=[x1xn][a11a1nan1ann][x1xn]=i=1nj=1naijxixj Q_{A}(\mathbf{x}) = \mathbf{x}^{T}A\mathbf{x} =\begin{bmatrix} x_{1} & \cdots &x_{n} \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}=\sum \limits _{i=1} ^{n}\sum \limits _{j=1} ^{n}a_{ij}x_{i}x_{j}

For example, the quadratic form on R2\mathbb{R}^{2} is as follows.

a11 x12+a22 x22+a12 x1 x2 +a21 x2 x1 = a11 x12+a22 x22+2a12 x1 x2  \begin{align*} & a_{11}^{\ }x_{1}^{2} + a_{22}^{\ }x_{2}^{2} + a_{12}^{\ }x_{1}^{\ }x_{2}^{\ } + a_{21}^{\ }x_{2}^{\ }x_{1}^{\ } \\ =&\ a_{11}^{\ }x_{1}^{2} + a_{22}^{\ }x_{2}^{2} + 2a_{12}^{\ }x_{1}^{\ }x_{2}^{\ } \end{align*}

The quadratic form on R3\mathbb{R}^{3} is as follows.

a11 x12+a22 x22+a33 x32+2a12 x1 x2 +2a13 x1 x3 +2a23 x2 x3  a_{11}^{\ }x_{1}^{2} + a_{22}^{\ }x_{2}^{2} + a_{33}^{\ }x_{3}^{2} + 2a_{12}^{\ }x_{1}^{\ }x_{2}^{\ } + 2a_{13}^{\ }x_{1}^{\ }x_{3}^{\ } + 2a_{23}^{\ }x_{2}^{\ }x_{3}^{\ }

To avoid repetition, it is common to combine cross terms as shown above. The quadratic form can be represented by the properties of matrix inner product as follows. For real and complex numbers, respectively:

QA(x)=xTAx=xAx=Axx=<Ax,x>=<x,Ax>QA(x)=xAx=xAx=Axx=<Ax,x>=<x,Ax> \begin{align*} Q_{A}(\mathbf{x}) &= \mathbf{x}^{T} A \mathbf{x} = \mathbf{x} \cdot A\mathbf{x} = A\mathbf{x} \cdot \mathbf{x} = \left< A\mathbf{x}, \mathbf{x}\right> = \left< \mathbf{x}, A \mathbf{x} \right> \\ Q_{A}(\mathbf{x}) &= \mathbf{x}^{\ast} A \mathbf{x} = \mathbf{x} \cdot A\mathbf{x} = A\mathbf{x} \cdot \mathbf{x} = \left< A\mathbf{x}, \mathbf{x}\right> = \left< \mathbf{x}, A \mathbf{x} \right> \end{align*}

If AA is a diagonal matrix, then since aij=0(ij)a_{ij}=0 (i \ne j) holds, the quadratic form QA(x)Q_{A}(\mathbf{x}) does not have cross terms.

QA(x)=xTAx=[x1xn][a11000a22000ann][x1xn]=i=1naiixi2 Q_{A}(\mathbf{x}) = \mathbf{x}^{T}A\mathbf{x} =\begin{bmatrix} x_{1} & \cdots &x_{n} \end{bmatrix} \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}\begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}=\sum \limits _{i=1}^{n} a_{ii}x_{i}^{2}

See Also