logo

Quantum Fredkin/CSWAP Gate

Quantum Fredkin/CSWAP Gate

양자정보이론
[ 펼치기 · 접기 ]

Definition1

(From the definition of the classical Fredkin gate (a,b,c)(a,(¬ab)(ac),(¬ac)(ab))(a, b, c) \mapsto \big(a, (\lnot a \land b) \lor (a \land c), (\lnot a \land c) \lor (a \land b) \big)) For qubits a,b,c=abc\ket{a, b, c} = \ket{a} \otimes \ket{b} \otimes \ket{c}, the quantum Toffoli gate is defined as follows.

Fq:(C2)3(C2)3a,b,ca,(¬ab)(ac),(¬ac)(ab),a,b,c{0,1} \begin{align*} F_{q} : (\mathbb{C}^{2})^{\otimes 3} &\to (\mathbb{C}^{2})^{\otimes 3} \\ \ket{a, b, c} &\mapsto \ket{a, (\lnot a \land b) \lor (a \land c), (\lnot a \land c) \lor (a \land b)},\quad \forall a,b,c \in \left\{ 0, 1 \right\} \end{align*}

Fq(abc)=a(¬ab)(ac)(¬ac)(ab) F_{q}(\ket{a} \otimes \ket{b} \otimes \ket{c}) = \ket{a} \otimes \ket{(\lnot a \land b) \lor (a \land c)} \otimes \ket{(\lnot a \land c) \lor (a \land b)}

Here, (C2)3(\mathbb{C}^{2})^{\otimes 3} is the tensor product of vector spaces, abc\ket{a} \otimes \ket{b} \otimes \ket{c} is the direct product, \land is the logical AND, \lor is the logical OR, and ¬\lnot is the logical NOT.

Description

This is the quantum computer version of the classical Fredkin gate. Whereas the classical Fredkin gate is a universal gate, the quantum Fredkin gate is not a universal gate. Not only the quantum Fredkin gate, but it is also impossible to find a universal gate in quantum computing.

The specific input and output of FqF_{q} are as follows. The output changes only when the input is 101,110\ket{101}, \ket{110}.

Fq(000)=0,(¬00)(00),(¬00)(00)=000Fq(001)=0,(¬00)(01),(¬01)(00)=001Fq(010)=0,(¬01)(00),(¬00)(01)=010Fq(011)=0,(¬01)(01),(¬01)(01)=011Fq(100)=1,(¬10)(10),(¬10)(10)=100Fq(101)=1,(¬10)(11),(¬11)(10)=110Fq(110)=1,(¬11)(10),(¬10)(11)=101Fq(111)=1,(¬11)(11),(¬11)(11)=111 F_{q} (\ket{000}) = \ket{0, (\lnot 0 \land 0) \lor (0 \land 0), (\lnot 0 \land 0) \lor (0 \land 0)} = \ket{000} \\[0.5em] F_{q} (\ket{001}) = \ket{0, (\lnot 0 \land 0) \lor (0 \land 1), (\lnot 0 \land 1) \lor (0 \land 0)} = \ket{001} \\[0.5em] F_{q} (\ket{010}) = \ket{0, (\lnot 0 \land 1) \lor (0 \land 0), (\lnot 0 \land 0) \lor (0 \land 1)} = \ket{010} \\[0.5em] F_{q} (\ket{011}) = \ket{0, (\lnot 0 \land 1) \lor (0 \land 1), (\lnot 0 \land 1) \lor (0 \land 1)} = \ket{011} \\[0.5em] F_{q} (\ket{100}) = \ket{1, (\lnot 1 \land 0) \lor (1 \land 0), (\lnot 1 \land 0) \lor (1 \land 0)} = \ket{100} \\[0.5em] F_{q} (\ket{101}) = \ket{1, (\lnot 1 \land 0) \lor (1 \land 1), (\lnot 1 \land 1) \lor (1 \land 0)} = \ket{110} \\[0.5em] F_{q} (\ket{110}) = \ket{1, (\lnot 1 \land 1) \lor (1 \land 0), (\lnot 1 \land 0) \lor (1 \land 1)} = \ket{101} \\[0.5em] F_{q} (\ket{111}) = \ket{1, (\lnot 1 \land 1) \lor (1 \land 1), (\lnot 1 \land 1) \lor (1 \land 1)} = \ket{111}

The matrix representation is as follows.

Fq=[1000000001000000001000000001000000001000000000100000010000000001] F_{q} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}


  1. 김영훈·허재성, 양자 정보 이론 (2020), p97 ↩︎