logo

Levi-Civita Connection, Riemannian Connection, Coefficients of Connection, Christoffel Symbols 📂Geometry

Levi-Civita Connection, Riemannian Connection, Coefficients of Connection, Christoffel Symbols

Theorem1

Let (M,g)(M,g) be a Riemannian manifold. Then, there uniquely exists an affine connection \nabla on MM satisfying the following:

Such \nabla specifically satisfies the following equation:

g(Z,YX)= 12(Xg(Y,Z)+Yg(Z,X)Zg(X,Y) g([X,Z],Y)g([Y,Z],X)g([X,Y],Z)) \begin{align*} g(Z, \nabla_{Y}X) =&\ \dfrac{1}{2}\Big( X g(Y, Z) + Y g(Z, X) - Z g(X, Y) \\ &\ - g([X, Z], Y) - g([Y, Z], X) - g([X, Y], Z) \Big) \tag{1} \end{align*}

Description

Such a connection \nabla is called the Levi-Civita (or Riemannian) connection.

Let’s denote the basis of the tangent space as {xi}=denote{Xi}\left\{ \dfrac{\partial }{\partial x_{i}} \right\} \overset{\text{denote}}{=} \left\{ X_{i} \right\}. By the definition of connection, XiXj\nabla_{X_{i}}X_{j} is also a vector field. Thus, it can be represented as a linear combination of XkX_{k}. By Einstein notation,

XiXj=kΓijkXk=ΓijkXk \nabla_{X_{i}}X_{j} = \sum_{k}\Gamma_{ij}^{k}X_{k} = \Gamma_{ij}^{k}X_{k}

Since the vector field is determined by Xi,XjX_{i}, X_{j}, let’s denote the coefficients by Γijk\Gamma_{ij}^{k}. These are called the coefficients of the connection \nabla or the Christoffel symbols of the connection. In differential geometry, the Christoffel symbols are defined as the coefficients of the second-order derivatives xij\mathbf{x}_{ij} of coordinate mappings x\mathbf{x}, and it can be shown that they are the same. By substituting Xi,Xj,XkX_{i}, X_{j}, X_{k} into the left side of (1)(1),

g(XjXi,Xk)=g(ΓjilXl,Xk)=Γjilglk \begin{align*} g(\nabla_{X_{j}}X_{i}, X_{k}) = g\left( \Gamma_{ji}^{l}X_{l}, X_{k} \right) = \Gamma_{ji}^{l}g_{lk} \end{align*}

Calculating the right side yields [Xi,Xj]=0[X_{i}, X_{j}] = 0, hence,

12(Xig(Xj,Xk)+Xjg(Xi,Xk)Xkg(Xi,Xj))=12(Xigjk+XjgikXkgij) \begin{align*} & \dfrac{1}{2}\left( X_{i}g(X_{j}, X_{k}) + X_{j}g(X_{i}, X_{k}) - X_{k}g(X_{i}, X_{j}) \right) \\ =& \dfrac{1}{2}\left( X_{i}g_{jk} + X_{j}g_{ik} - X_{k}g_{ij} \right) \\ \end{align*}

Therefore,

Γjilglk=12(Xigjk+XjgikXkgij)    kΓjilglkgks=k12gks(Xigjk+XjgikXkgij)    Γjilδls=k12gks(Xigjk+XjgikXkgij)    Γjis=k12gks(Xigjk+XjgikXkgij) \begin{align*} && \Gamma_{ji}^{l}g_{lk} &= \dfrac{1}{2}\left( X_{i}g_{jk} + X_{j}g_{ik} - X_{k}g_{ij} \right) \\ \implies && \sum_{k}\Gamma_{ji}^{l}g_{lk}g^{ks} &= \sum_{k}\dfrac{1}{2}g^{ks}\left( X_{i}g_{jk} + X_{j}g_{ik} - X_{k}g_{ij} \right) \\ \implies && \Gamma_{ji}^{l}\delta_{l}^{s} &= \sum_{k}\dfrac{1}{2}g^{ks}\left( X_{i}g_{jk} + X_{j}g_{ik} - X_{k}g_{ij} \right) \\ \implies && \Gamma_{ji}^{s} &= \sum_{k}\dfrac{1}{2}g^{ks}\left( X_{i}g_{jk} + X_{j}g_{ik} - X_{k}g_{ij} \right) \\ \end{align*}

Summarizing, the following can be obtained:

Γijk=12gmk(xigjm+xjgimxmgij) \Gamma_{ij}^{k} = \dfrac{1}{2}g^{mk}\left( \dfrac{\partial }{\partial x_{i}}g_{jm} + \dfrac{\partial }{\partial x_{j}}g_{im} - \dfrac{\partial }{\partial x_{m}}g_{ij} \right)

This is the same as the equation obtained for surfaces on R3\mathbb{R}^{3} in differential geometry. Particularly, in Euclidean space Rn\mathbb{R}^{n}, since the metric is constant as gij=δijg_{ij} = \delta_{ij}, it follows that Γijk=0\Gamma_{ij}^{k} = 0.

When initially defining affine connections, XY\nabla_{X}Y was not explicitly given and was defined only as an abstract concept satisfying certain properties. However, when the Riemannian metric gg is given to such a connection \nabla, it is clear that XY\nabla_{X}Y is determined by the coefficients of the metric gijg_{ij}. If we denote this as X=uiXi,Y=vjXjX = u^{i}X_{i}, Y= v^{j}X_{j}, then

XY=uiXivjXj=uiXi(vj)Xj+uivjXiXj=uiXi(vj)Xj+uivjΓijkXk=uiXi(vk)Xk+uivjΓijkXk=(uiXi(vk)+uivjΓijk)Xk=(uiXi(vk)+uivjΓijk)Xk \begin{align*} \nabla_{X}Y = \nabla_{u^{i}X_{i}}v^{j}X_{j} &= u^{i}X_{i}(v^{j})X_{j} + u^{i}v^{j}\nabla_{X_{i}}X_{j} \\ &= u^{i}X_{i}(v^{j})X_{j} + u^{i}v^{j}\Gamma_{ij}^{k}X_{k} \\ &= u^{i}X_{i}(v^{k})X_{k} + u^{i}v^{j}\Gamma_{ij}^{k}X_{k} \\ &= \left( u^{i}X_{i}(v^{k}) + u^{i}v^{j}\Gamma_{ij}^{k}\right)X_{k} \\ &= \left( u^{i}X_{i}(v^{k}) + u^{i}v^{j}\Gamma_{ij}^{k}\right)X_{k} \\ \end{align*}

If we denote this as X=Xixi,Y=YixjX = X^{i}\dfrac{\partial }{\partial x_{i}}, Y = Y^{i}\dfrac{\partial }{\partial x_{j}}, then

XY=(XiYkxi+XiYjΓijk)xk=i,k(XiYkxi+jXiYjΓijk)xk \begin{align*} \nabla_{X}Y &= \left( X^{i}\dfrac{\partial Y^{k}}{\partial x_{i}} + X^{i}Y^{j}\Gamma_{ij}^{k}\right)\dfrac{\partial }{\partial x_{k}} \\ &= \sum_{i,k}\left( X^{i}\dfrac{\partial Y^{k}}{\partial x_{i}} + \sum_{j}X^{i}Y^{j}\Gamma_{ij}^{k}\right)\dfrac{\partial }{\partial x_{k}} \end{align*}

Moreover, the covariant derivative of the vector field V=vjXjV = v^{j}X_{j} is as follows.

DVdt=k(dvkdt+i,jvjdcidtΓijk)Xk \dfrac{DV}{dt} = \sum_{k} \left( \dfrac{d v^{k}}{dt} + \sum_{i,j} v^{j}\frac{dc_{i}}{dt} \Gamma_{ij}^{k} \right) X_{k}

Proof

  • Part 1. Uniqueness

    Assume that a connection \nabla satisfying the conditions of the theorem exists. Since \nabla is compatible, for vector fields X,Y,ZX,Y,Z \in X(M)\mathfrak{X}(M), the following holds:

    Xg(Y,Z)= g(XY,Z)+g(Y,XZ)Yg(Z,X)= g(YZ,X)+g(Z,YX)Zg(X,Y)= g(ZX,Y)+g(X,ZY) \begin{align*} X g(Y, Z) =&\ g(\nabla_{X}Y, Z) + g(Y, \nabla_{X}Z) \\ Y g(Z, X) =&\ g(\nabla_{Y}Z, X) + g(Z, \nabla_{Y}X) \\ Z g(X, Y) =&\ g(\nabla_{Z}X, Y) + g(X, \nabla_{Z}Y) \\ \end{align*}

    By adding the first equation and the second, and subtracting the third, as \nabla is symmetric, we obtain the following:

     Xg(Y,Z)+Yg(Z,X)Zg(X,Y)= g(XY,Z)+g(Y,XZ)+g(YZ,X)+g(Z,YX)g(ZX,Y)g(X,ZY)= g(XZZX,Y)+g(YZZY,X)+g(XY,Z)+g(Z,YX)= g([X,Z],Y)g([Y,Z],X)g(XY,Z)+g(Z,YX) \begin{align*} &\ X g(Y, Z) + Y g(Z, X) - Z g(X, Y) \\ =&\ g(\nabla_{X}Y, Z) + {\color{red}g(Y, \nabla_{X}Z)} + {\color{blue}g(\nabla_{Y}Z, X)} + g(Z, \nabla_{Y}X) - {\color{red}g(\nabla_{Z}X, Y)} - {\color{blue}g(X, \nabla_{Z}Y)} \\ =&\ {\color{red}g(\nabla_{X}Z-\nabla_{Z}X, Y)} + {\color{blue}g(\nabla_{Y}Z - \nabla_{Z}Y, X)} + g(\nabla_{X}Y, Z) + g(Z, \nabla_{Y}X) \\ =&\ g([X, Z], Y) - g([Y, Z], X) - g(\nabla_{X}Y, Z) + g(Z, \nabla_{Y}X) \end{align*}

    Arranging this with 0=g(YX,Z)g(YX,Z)0=g(\nabla_{Y}X, Z)-g(\nabla_{Y}X, Z) added yields:

    Xg(Y,Z)+Yg(Z,X)Zg(X,Y)=g([X,Z],Y)+g([Y,Z],X)+g([X,Y],Z)+2g(Z,YX) X g(Y, Z) + Y g(Z, X) - Z g(X, Y) \\ = g([X, Z], Y) + g([Y, Z], X) + g([X, Y], Z) + 2g(Z, \nabla_{Y}X)

    Arranging the last term of the right side yields:

    g(Z,YX)= 12(Xg(Y,Z)+Yg(Z,X)Zg(X,Y) g([X,Z],Y)g([Y,Z],X)g([X,Y],Z)) \begin{align*} g(Z, \nabla_{Y}X) =&\ \dfrac{1}{2}\Big( X g(Y, Z) + Y g(Z, X) - Z g(X, Y) \\ &\ - g([X, Z], Y) - g([Y, Z], X) - g([X, Y], Z) \Big) \tag{1} \end{align*}

    Now, let’s assume that another connection \nabla^{\prime} exists.

    g(Z,YX)= 12(Xg(Y,Z)+Yg(Z,X)Zg(X,Y) g([X,Z],Y)g([Y,Z],X)g([X,Y],Z)) \begin{align*} g(Z, \nabla^{\prime}_{Y}X) =&\ \dfrac{1}{2}\Big( X g(Y, Z) + Y g(Z, X) - Z g(X, Y) \\ &\ - g([X, Z], Y) - g([Y, Z], X) - g([X, Y], Z) \Big) \end{align*}

    Subtracting these two equations,

    g(Z,YX)g(Z,YX)=g(Z,YXYX)=0 g(Z, \nabla_{Y}X)-g(Z, \nabla^{\prime}_{Y}X) = g(Z, \nabla_{Y}X - \nabla^{\prime}_{Y}X) = 0

    According to the properties of inner product, for the above equation to hold for all ZZ, it must be YXYX=0\nabla_{Y}X - \nabla^{\prime}_{Y}X=0. Therefore, such a connection \nabla is unique.

    YX=YX \nabla_{Y}X = \nabla^{\prime}_{Y}X

  • Part 2. Existence

    If \nabla is defined as in (1)(1), it is well-defined and satisfies the conditions of the theorem well.


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p55-56 ↩︎