logo

Gaussian Curvature and Mean Curvature 📂Geometry

Gaussian Curvature and Mean Curvature

Definition1

Let’s consider the principal curvature at a point pp on a surface MM be denoted as κ1,κ2\kappa_{1}, \kappa_{2}. Let LL be referred to as the Weingarten map. The Gaussian curvature KK is defined as follows:

K:=κ1κ2=detL=det([Lij]) K := \kappa_{1} \kappa_{2} = \det L = \det ([{L^{i}}_{j}])

where Lij=kLkjgki{L^{i}}_{j} = \sum \limits_{k} L_{kj}g^{ki} applies.

Formula

  • The product of the principal curvatures

K=κ1κ2 K = \kappa_{1} \kappa_{2}

$$

$$

K= K =

K=limRpA(ν(R))A(R) K = \lim\limits_{\mathscr{R} \to p} \dfrac{A(\nu (\mathscr{R}))}{A(\mathscr{R})}

Theorems

  1. H2KH^{2} \ge K holds.

  2. Let X,Y\mathbf{X}, \mathbf{Y} be the orthonormal vectors at point pp. Then, the following is true:

H=12(II(X,X)+II(Y,Y)) H = \dfrac{1}{2}\left( II(\mathbf{X}, \mathbf{X}) + II(\mathbf{Y}, \mathbf{Y}) \right)

  1. Let YTpM\mathbf{Y} \in T_{p}M be the unit tangent vector, κn\kappa_{n} be the normal curvature, and θ\theta be the angle between the principal directions X1\mathbf{X}_{1} and Y\mathbf{Y}. The following holds:

H=12π02πκndθ H = \dfrac{1}{2\pi}\int_{0}^{2\pi}\kappa_{n}d\theta

Proof

3.

Given that κn=II(Y,Y)\kappa_{n} = II(\mathbf{Y}, \mathbf{Y}) and II(Y,Y)=κ1cos2θ+κ2sin2θII(\mathbf{Y}, \mathbf{Y}) = \kappa_{1}\cos^{2}\theta + \kappa_{2}\sin^{2}\theta,

12π02πκndθ=12π02πκ1cos2θ+κ2sin2θdθ=12π(κ102πcos2dθ+κ202πsin2θdθ)=12π(κ1π+κ2π)=κ1+κ22=H \begin{align*} \dfrac{1}{2\pi}\int_{0}^{2\pi}\kappa_{n}d\theta &= \dfrac{1}{2\pi}\int_{0}^{2\pi} \kappa_{1}\cos^{2}\theta + \kappa_{2}\sin^{2}\theta d\theta \\ &= \dfrac{1}{2\pi} \left( \kappa_{1} \int_{0}^{2\pi} \cos^{2} d\theta + \kappa_{2} \int_{0}^{2\pi}\sin^{2}\theta d\theta \right) \\ &= \dfrac{1}{2\pi} \left( \kappa_{1} \pi + \kappa_{2} \pi \right) \\ &= \dfrac{\kappa_{1} + \kappa_{2}}{2} \\ &= H \end{align*}

(Refer to trigonometric integral table (2),(3)(2), (3))


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p130 ↩︎