logo

Expectation of Random Vectors 📂Mathematical Statistics

Expectation of Random Vectors

Definition 1

E(X):=[E(X1)E(Xn)] E \left( X \right) := \begin{bmatrix} E \left( X_{1} \right) \\ \vdots \\ E \left( X_{n} \right) \end{bmatrix} The expectation of a random vector X=(X1,,Xn)X = \left( X_{1} , \cdots , X_{n} \right) is defined as a vector of the expectations of its components, as shown above. Similarly, the matrix X=[Xij]\mathbf{X} = \left[ X_{ij} \right] of a random variable of size m×nm \times n is also defined as a matrix E(X):=[E(Xij)]E \left( \mathbf{X} \right) := \left[ E \left( X_{ij} \right) \right] that contains the expectation of each element.

Properties

  • [1] Linearity: If X1\mathbf{X}_{1} and X2\mathbf{X}_{2} are random matrices of size m×nm \times n and constant matrices A1,A2Rk×mA_{1}, A_{2} \in \mathbb{R}^{k \times m} and BRn×lB \in \mathbb{R}^{n \times l} are given, then the following holds true: E(A1X1+A2X2)=A1E(X1)+A2E(X2)E(A1X1B)=A1E(X1)B \begin{align*} E \left( A_{1} \mathbf{X}_{1} + A_{2} \mathbf{X}_{2} \right) =& A_{1} E \left( \mathbf{X}_{1} \right) + A_{2} E \left( \mathbf{X}_{2} \right) \\ E \left( A_{1} \mathbf{X}_{1} B \right) =& A_{1} E \left( X_{1} \right) B \end{align*}
  • [2] Trace: E(tr(X))=tr(E(X))E(\tr(\mathbf{X})) = \tr(E(\mathbf{X}))

Proof

[1]

We will only show E(AX)=AE(X)E \left( A \mathbf{X} \right) = A E \left( \mathbf{X} \right), and omit the rest.

Let’s denote A=[aik]A = \begin{bmatrix} a_{ik}\end{bmatrix} as a m×pm \times p matrix and X=[Xkj]\mathbf{X} = \begin{bmatrix} X_{kj}\end{bmatrix} as a p×np \times n matrix. Then, by the definition of matrix multiplication and the expectation of matrices,

E(AX)=E([k=1paikXkj])=[E(k=1paikXkj)]=[k=1paikE(Xkj)]by linearity of E=AE(X) \begin{align*} E(A \mathbf{X}) &= E \left( \begin{bmatrix} \sum\limits_{k=1}^{p} a_{ik}X_{kj} \end{bmatrix} \right) \\ &= \begin{bmatrix} E \left( \sum\limits_{k=1}^{p} a_{ik}X_{kj} \right) \end{bmatrix} \\ &= \begin{bmatrix} \sum\limits_{k=1}^{p} a_{ik} E \left( X_{kj} \right) \end{bmatrix} & \text{by linearity of EE} \\ &= A E(\mathbf{X}) \end{align*}

[2]

X=[Xij]\mathbf{X} = \begin{bmatrix} X_{ij} \end{bmatrix}n×nn \times n 행렬이라고 하자.

E(tr(A))=E(i=1nXii)=i=1nE(Xii)by linearity of E=tr[E(X11)E(X1n)E(Xn1)E(Xnn)]by definition of trace=tr(E(X)) \begin{align*} E(\tr(A)) &= E \left( \sum\limits_{i=1}^{n} X_{ii} \right) \\ &= \sum\limits_{i=1}^{n} E(X_{ii}) & \text{by linearity of EE} \\ &= \tr \begin{bmatrix} E(X_{11}) & \cdots & E(X_{1n}) \\ \vdots & \ddots & \vdots \\ E(X_{n1}) & \cdots & E(X_{nn}) \end{bmatrix} & \text{by definition of trace} \\ &= \tr\left( E(\mathbf{X}) \right) \end{align*}


  1. Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): p125. ↩︎