E(X):=E(X1)⋮E(Xn)
The expectation of a random vectorX=(X1,⋯,Xn) is defined as a vector of the expectations of its components, as shown above. Similarly, the matrixX=[Xij] of a random variable of size m×n is also defined as a matrix E(X):=[E(Xij)] that contains the expectation of each element.
Properties
[1] Linearity: If X1 and X2 are random matrices of size m×n and constant matrices A1,A2∈Rk×m and B∈Rn×l are given, then the following holds true:
E(A1X1+A2X2)=E(A1X1B)=A1E(X1)+A2E(X2)A1E(X1)B
Let’s denote A=[aik] as a m×p matrix and X=[Xkj] as a p×n matrix. Then, by the definition of matrix multiplication and the expectation of matrices,
E(AX)=E([k=1∑paikXkj])=[E(k=1∑paikXkj)]=[k=1∑paikE(Xkj)]=AE(X)by linearity of E
■
[2]
X=[Xij]\mathbf{X} = \begin{bmatrix} X_{ij} \end{bmatrix}X=[Xij]를 n×nn \times nn×n행렬이라고 하자.
E(tr(A))=E(∑i=1nXii)=∑i=1nE(Xii)by linearity of E=tr[E(X11)⋯E(X1n)⋮⋱⋮E(Xn1)⋯E(Xnn)]by definition of trace=tr(E(X))
\begin{align*}
E(\tr(A))
&= E \left( \sum\limits_{i=1}^{n} X_{ii} \right) \\
&= \sum\limits_{i=1}^{n} E(X_{ii}) & \text{by linearity of EEE} \\
&= \tr \begin{bmatrix} E(X_{11}) & \cdots & E(X_{1n}) \\ \vdots & \ddots & \vdots \\ E(X_{n1}) & \cdots & E(X_{nn}) \end{bmatrix} & \text{by definition of trace} \\
&= \tr\left( E(\mathbf{X}) \right)
\end{align*}
E(tr(A))=E(i=1∑nXii)=i=1∑nE(Xii)=trE(X11)⋮E(Xn1)⋯⋱⋯E(X1n)⋮E(Xnn)=tr(E(X))by linearity of Eby definition of trace
■
Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): p125. ↩︎