logo

Gibbs' Inequality 📂Probability Theory

Gibbs' Inequality

Theorem

Gibbs Inequality describes the relationship between Shannon Entropy and Cross Entropy, ensuring the lower bound of Kullback-Leibler Divergence.

Theorem

H(P)H(P,Q) H(P) \le H(P,Q)

Proof 1

The proof is provided only for the discrete case, assuming for all kk that pk>0p_{k} > 0.

The equation of the tangent line at x=1x=1 on the curve y=lnxy = \ln x is y=x1y = x - 1. Since the logarithm is a convex function upward, it touches only at one point (1,0)R(1,0) \in \mathbb{R}, thereby showing that x>0x > 0 is less than or equal to lnxx1\ln x \le x - 1. By the logarithm base change formula, the equality of the second line is due to lnxx1\ln x \le x - 1, leading to the equality of the third line. k=1npklog2pk+k=1npklog2qk=k=1npklog2qkpk=1ln2k=1npklnqkpk1ln2k=1npk(qkpk1)=1ln2(k=1nqkk=1npk)=11=0 \begin{align*} -\sum_{k=1}^{n} p_{k} \log_{2} p_{k} + \sum_{k=1}^{n} p_{k} \log_{2} q_{k} =& \sum_{k=1}^{n} p_{k} \log_{2} {{ q_{k} } \over { p_{k} }} \\ =& {{ 1 } \over { \ln 2 }} \sum_{k=1}^{n} p_{k} \ln {{ q_{k} } \over { p_{k} }} \\ \le & {{ 1 } \over { \ln 2 }} \sum_{k=1}^{n} p_{k} \left( {{ q_{k} } \over { p_{k} }} - 1 \right) \\ =& {{ 1 } \over { \ln 2 }} \left( \sum_{k=1}^{n} q_{k} - \sum_{k=1}^{n} p_{k} \right) \\ =& 1 - 1 \\ =& 0 \end{align*} Moving H(P,Q)=k=1npklog2qkH(P,Q) = \sum_{k=1}^{n} p_{k} \log_{2} q_{k} to the right side yields H(P)=k=1npklog2pkk=1npklog2qk=H(P,Q) H(P) = \sum_{k=1}^{n} p_{k} \log_{2} p_{k} \le \sum_{k=1}^{n} p_{k} \log_{2} q_{k} = H(P,Q)


  1. 강정흥. (2020). 확률정보론: p110. ↩︎