logo

Radius of Convergence of Power Series 📂Analysis

Radius of Convergence of Power Series

Summary1

For the given power series n=0cn(xa)n\sum\limits_{n=0}^{\infty} c_{n}(x - a)^{n}, let α\alpha and RR be defined as follows.

α=lim supncnn,R=1α \alpha = \limsup\limits_{n \to \infty} \sqrt[n]{|c_{n}|}, \qquad R = \dfrac{1}{\alpha}

Then the series converges if xa<R\left| x - a \right| \lt R, and diverges if xa>R\left| x - a \right| \gt R.

  • If α=0\alpha = 0, let R=R = \infty, and if α=\alpha = \infty, let R=0R = 0.

Definition

According to the theorem above, RR is called the radius of convergence of the power series n=0cn(xa)n\sum\limits_{n=0}^{\infty} c_{n}(x - a)^{n}.

Explanation

From the proof below, we can see that the power series cn(xa)n\sum\limits_{} c_{n} (x - a)^{n} with the radius of convergence RR absolutely converges on the open interval (aR,a+R)(a - R, a + R).

Proof

Since an=cn(xa)na_{n} = c_{n} (x - a)^{n}, applying the root test here,

lim supnann=lim supncnxann=lim supncnnxa=xaR \limsup\limits_{n \to \infty} \sqrt[n]{|a_{n}|} = \limsup\limits_{n \to \infty} \sqrt[n]{|c_{n}| \left| x - a \right|^{n}} = \limsup\limits_{n \to \infty} \sqrt[n]{|c_{n}|} \left| x - a \right| = \dfrac{\left| x - a \right|}{R}

By the root test, the series converges if xaR<1\dfrac{\left| x - a \right|}{R} \lt 1, and diverges if xaR>1\dfrac{\left| x - a \right|}{R} \gt 1.


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p69 ↩︎