logo

Equation of an Ellipse with the Focus at the Origin in Polar Coordinates 📂Mathematical Physics

Equation of an Ellipse with the Focus at the Origin in Polar Coordinates

Theorem

5F1E8A921.png

The equation of an ellipse in polar coordinates is given as follows.

r=α1+ϵcosθ(a) r=\frac{\alpha}{1+\epsilon \cos \theta}\tag{a}

or

r=b2/a1+a2b2acosθ(b) r=\frac{b^{2}/a}{1+\frac{\sqrt{a^{2}-b^{2}}}{a}\cos\theta} \tag{b}

Where α\alpha is the focal parameter, ϵ\epsilon is the eccentricity, aa is the semi-major axis, and bb is the semi-minor axis.

Explanation

The two proofs below are essentially the same.

Proof

High School Level

3.png

The definition of an ellipse is the set of points where the sum of the distances to the two foci is constant. It’s easy to see from the diagram that the sum of the distances at the point farthest to the right is 2a2a. Therefore, by the definition of an ellipse, FP+PF=2a \begin{align*} \overline{F^{\prime}P} +\overline{PF} =2a \end{align*} Considering the point PP at position BB, you can derive the relation b2=a2c2b^{2}=a^{2}-c^{2}.1 Therefore, FF=2c=2a2b2 \overline{F^{\prime}F}=2c=2\sqrt{a^{2}-b^{2}} Now, applying the Pythagorean theorem to the triangle FPH\triangle F^{\prime}PH, we get (2ar)2=(2a2b2+rcosθ)2+(rsinθ)2    4a24ar+r2=4(a2b2)+4ra2b2cosθ+r2cos2θ+r2sin2θ    4a24ar =4(a2b2)+4ra2b2cosθ    (a+a2b2cosθ)r=b2    r=b2a+a2b2cosθ=b2/a1+a2b2acosθ \begin{align*} &&(2a-r)^{2} &= (2 \sqrt{a^{2}- b^{2}}+r \cos \theta)^{2}+(r\sin \theta)^{2} \\ \implies && 4a^{2}-4ar+r^{2} &= 4(a^{2}-b^{2}) + 4r\sqrt{a^{2}-b^{2}}\cos\theta +r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta \\ \implies && 4a^{2} -4ar \ &= 4(a^{2} - b^{2}) +4r\sqrt{a^{2}-b^{2}}\cos \theta \\ \implies && (a+\sqrt{a^{2} - b^{2}}\cos\theta)r &= b^{2} \\ \\ \implies && r&=\frac{b^{2}}{a+\sqrt{a^{2}-b^{2}}\cos\theta} \\ && &=\frac{b^{2}/a}{1+\frac{\sqrt{a^{2}-b^{2}}}{a}\cos\theta} \end{align*}

University Level

The starting point of the proof is the same. By the definition of an ellipse,

r+r=2a(1) r^{\prime}+r=2a \tag{1}

Now, look at the diagram below.

2.png

Applying the Pythagorean theorem to the triangle above gives

r2=(rsinθ)2+(2ϵa+rcosθ)2=r2sin2θ+4ϵ2a2+4ϵarcosθ+r2cos2θ=r2+4ϵ2a2+4ϵarcosθ \begin{align*} {r^{\prime}}^{2} &= (r\sin \theta)^{2} + (2\epsilon a +r\cos \theta) ^{2} \\ &= r^{2}\sin ^{2} \theta +4\epsilon^{2}a^{2}+4\epsilon ar \cos \theta+ r^{2} \cos^{2} \theta \\ &= r^{2} + 4\epsilon^{2}a^{2} + 4\epsilon a r \cos \theta \end{align*}

Substituting (1)(1) into the left side of the above equation gives

4a24ar+r2=r2+4ϵ2a2+4ϵarcosθ    4a24ar=4ϵ2a2+4ϵarcosθ    4a2(1ϵ2)=4a(1+ϵcosθ)r    r=a(1ϵ2)1+ϵcosθ \begin{align*} && 4a^{2} -4ar+r^{2} &=r^{2} + 4\epsilon^{2}a^{2} + 4\epsilon a r \cos \theta \\ \implies && 4a^{2} -4ar &= 4\epsilon^{2}a^{2} + 4\epsilon a r \cos \theta \\ \implies && 4a^{2}(1-\epsilon^{2}) &= 4a(1+ \epsilon \cos \theta)r \\ \implies && r &= \frac{a(1-\epsilon ^{2})}{1+\epsilon \cos \theta } \end{align*}

If θ=π2\theta={\textstyle \frac{\pi}{2}}, then the above equation becomes the following, and from the diagram, it can be seen that this value becomes the focal parameter α\alpha.

r=a(1ϵ2)=α r=a(1-\epsilon^{2})=\alpha

Therefore, the equation of an ellipse in polar coordinates can be expressed as

r=α1+ϵcosθ r= \frac{\alpha}{1+\epsilon \cos \theta}


  1. It is a naturally obtained expression when deriving the equation of an ellipse. ↩︎