logo

Hermite Interpolation 📂Numerical Analysis

Hermite Interpolation

Definition 1

For data (x1,y1,y1),,(xn,yn,yn)(x_{1}, y_{1} , y’_{1}) , \cdots , (x_{n} , y_{n}, y’_{n}) of different x1,,xnx_{1} , \cdots , x_{n} that satisfies {p(xi)=yip(xi)=yi\begin{cases} p (x_{i} ) = y_{i} \\ p '(x_{i} ) = y’_{i} \end{cases} and degH2n1\deg H \le 2n-1, the polynomial function HH is referred to as Hermite Interpolation.

Theorem

Existence and Uniqueness

  • [1]: For the given data, HH uniquely exists.

Lagrange Form

  • [2]: Hn(x)=i=1nyihi(x)+i=1nyih~i(x)H_{n} (x) = \sum_{i=1}^{n} y_{i} h_{i} (x) + \sum_{i=1}^{n} y’_{i} \tilde{h}_{i} (x)

Newton Divided Differences Form

  • [3]: Hn(x)=f(x1)+(xx1)f[x1,x1]+(xx1)2f[x1,x1,x]++(xx1)2(xxn1)2(xxn)f[x1,x1,,xn,xn]\begin{align*}H_{n} (x) =& f(x_{1}) + (x - x_{1}) f [ x_{1} , x_{1} ] + (x - x_{1})^2 f [ x_{1} , x_{1} , x ] + \cdots \\ & + (x - x_{1})^2 \cdots (x - x_{n-1})^2 (x - x_{n}) f [ x_{1} , x_{1} , \cdots, x_{n} , x_{n} ]\end{align*}

Error Analysis

  • [4]: Error with the actual function: For a 2n2n times differentiable f:RRf : \mathbb{R} \to \mathbb{R} and some ξxH{x1,,xn,x}\xi_{x} \in \mathscr{H} \left\{ x_{1} , \cdots , x_{n} , x \right\}, the Hermite Interpolation HnH_{n} satisfies the following. f(x)Hn(x)=[Ψn(x)]2(2n)!f(2n)(ξx) f(x) - H_{n} (x) = {{ [ \Psi_{n} (x) ]^2 } \over { (2n)! }} f^{(2n)} ( \xi_{x} )

  • H{a,b,c,}\mathscr{H} \left\{ a,b,c, \cdots \right\} represents the smallest interval that includes a,b,c,a,b,c, \cdots.

Explanation

Hermite Interpolation is interested in the polynomial that interpolates not only the function values but also the derivative values in Polynomial Interpolation. Since the differentiation is reflected, it is more accurate than Polynomial Interpolation.

However, it can also be applied to more than one differentiation, but its form is extremely complicated.

Proof

[1]

Strategy: Assume that multiple Hermite interpolations exist and show that it is a contradiction.


Assuming HH and a different Hermite Polynomial GG exist.

If R:=HGR := H - G, then for x=x1,,xnx = x_{1}, \cdots , x_{n} {H(xi)=G(xi)=yiH(xi)=G(xi)=yi\begin{cases} H (x_{i} ) = G (x_{i} ) = y_{i} \\ H’ (x_{i} ) = G' (x_{i} ) = y’_{i} \end{cases}, meaning R(xi)=R(xi)=0 R(x_{i}) = R’(x_{i}) = 0 This means x1,,xnx_{1}, \cdots , x_{n} are all R(x)=0R(x) = 0th multiple roots of 22, so for some polynomial q(x)q(x), R=q(x)(xx1)2(xxn)2 R = q(x) (x - x_{1} )^2 \cdots (x - x_{n} )^2 If q(x)0q(x) \ne 0, it contradicts because degR2n\deg R \ge 2n, and if q(x)=0q(x) = 0, R(x)=0R(x) = 0 must be H(x)=G(x)H(x) = G(x).

[2]

Strategy: Similar to Lagrange’s formula, specifically find hih_{i} and h~i\tilde{h}_{i}.


Part 1.

Ψn(x):=(xx1)(xxn) \Psi_{n} (x) := (x-x_{1}) \cdots (x - x_{n}) Differentiating Ψn\Psi_{n} with respect to xx and substituting x=xjx = x_{j} yields Ψn(xj):=(xx1)(xxj1)(xxj+1)(xxn) \Psi’_{n} (x_{j}) := (x-x_{1}) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_{n})

    Ψ(x)n(xxj)Ψn(xj)(xx1)(xxj1)(xxj+1)(xxn)(xjx1)(xjxj1)(xjxj+1)(xjxn)=lj(x) \implies {{ \Psi (x)_{n} } \over { (x - x_{j}) \Psi’_{n}(x_{j}) }} \equiv {{ (x - x_{1} ) \cdots (x - x_{j-1} ) (x - x_{j+1} ) \cdots (x - x_{n} ) } \over { (x_{j} - x_{1} ) \cdots (x_{j} - x_{j-1} ) (x_{j} - x_{j+1} ) \cdots (x_{j} - x_{n} ) }} = l_{j} (x) Here, lil_{i} indicates the Kronecker delta function with respect to the index.


Part 2.

hi(x):=[12li(xi)(xxi)][li(x)]2 h_{i} (x) := \left[ 1 - 2 l’_{i} (x_{i}) (x -x_{i} ) \right] \left[ l_{i}(x) \right]^2 Defining hih_{i} as such, since li(xj)=δijl_{i} (x_{j}) = \delta_{ij}, {hi(xj)=δijhi(xj)=0 \begin{cases} h_{i} ( x_{j} ) = \delta_{ij} \\ h’_{i} ( x_{j} ) = 0 \end{cases}


Part 3.

h~i(x):=(xxi)[li(x)]2 \tilde{h}_{i} (x) := (x -x_{i} ) \left[ l_{i}(x) \right]^2 Defining h~i\tilde{h}_{i} as such, since li(xj)=δijl_{i} (x_{j}) = \delta_{ij}, {h~i(xj)=0h~i(xj)=δij \begin{cases} \tilde{h}_{i} ( x_{j} ) = 0 \\ \tilde{h}’_{i} ( x_{j} ) = \delta_{ij} \end{cases}


Part 4.

Hn(x):=i=1nyihi(x)+i=1nyih~i(x) H_{n} (x) := \sum_{i=1}^{n} y_{i} h_{i} (x) + \sum_{i=1}^{n} y’_{i} \tilde{h}_{i} (x) Defining HnH_{n} as such, by Part 2 and Part 3, {Hn(xi)=yiHn(xi)=yi \begin{cases} H_{n}(x_{i}) = y_{i} \\ H'_{n}(x_{i}) = y’_{i} \end{cases}

[3]

Strategy: Start from the Newton’s Divided Differences Formula and directly show that the formula holds.


According to the Newton’s Divided Differences Formula for z1,,z2nz_{1}, \cdots , z_{2n}, f(x)p2n1(x)=(xz1)(xz2n)f[z1,,zn,x] f(x) - p_{2n-1} (x) = (x - z_{1}) \cdots (x - z_{2n}) f [ z_{1} , \cdots , z_{n} , x ] If z2i1,z2ixiz_{2i-1} , z_{2i} \to x_{i}, then f(x)p2n1(x)=(xx1)2(xxn)2f[x1,x1,,xn,xn,x] \begin{equation} f(x) - p_{2n-1} (x) = (x - x_{1})^2 \cdots (x - x_{n})^2 f [ x_{1} , x_{1} , \cdots , x_{n} , x_{n} , x ] \end{equation} Directly substituting x=x1,,xnx = x_{1}, \cdots , x_{n} yields f(xi)p2n1(xi)=0 f(x_{i} ) - p_{2n-1} (x_{i}) = 0 Meanwhile, differentiating both sides of (1)(1) yields A(x):=(xx1)2(xxn)2ddxf[x1,x1,,xn,xn,x]B(x):=2f[x1,x1,,xn,xn,x]i=1n[(xxi)ij(xxj)2] \begin{align*} A(x) :=& (x - x_{1})^2 \cdots (x - x_{n})^2 {{ d } \over { dx }} f [ x_{1} , x_{1} , \cdots , x_{n} , x_{n} , x ] \\ B(x) :=& 2 f [ x_{1} , x_{1} , \cdots , x_{n} , x_{n} , x ] \sum_{i=1}^{n} \left[ (x -x_{i} ) \prod_{i \ne j} (x - x_{j})^2 \right] \end{align*} For which, f(x)p2n1(x)=A(x)+B(x) f ' (x) - p '_{2n-1} (x) = A(x) + B(x) Direct substitution of x=x1,,xnx = x_{1}, \cdots , x_{n} gives A(xi)=B(xi)=0A(x_{i}) = B(x_{i}) = 0, so f(xi)p2n1(xi)=0 f ' (x_{i} ) - p '_{2n-1} (x_{i}) = 0 Therefore, we obtain Hn(x)=p2n1(x)H_{n} (x) = p_{2n-1} (x).

[4]

According to [3], f(x)Hn(x)=f[x1,x1,,xn,xn,x] f(x) - H_{n} (x) = f [ x_{1} , x_{1} , \cdots , x_{n} , x_{n} , x ]

Corollary of the Hermite-Genocchi Formula:

  • [4]’: f[xi,,xin+1]=1n!f(n)(xi)f [ \underbrace{ x_{i} , \cdots , x_{i} }_{ n+1 } ] = {{1} \over {n!}} f^{(n)} ( x_{i} )

According to the Corollary of the Hermite-Genocchi Formula, for some ξxH{x1,,xn,x}\xi_{x} \in \mathscr{H} \left\{ x_{1} , \cdots , x_{n} , x \right\}, f(x)Hn(x)=[Ψn(x)]2(2n)!f(2n)(ξx) f(x) - H_{n} (x) = {{ [ \Psi_{n} (x) ]^2 } \over { (2n)! }} f^{(2n)} ( \xi_{x} )


  1. Atkinson. (1989). An Introduction to Numerical Analysis(2nd Edition): p159. ↩︎