Proving the Invariance of the Laplace Equation with Respect to Orthogonal Transformations
📂Partial Differential Equations Proving the Invariance of the Laplace Equation with Respect to Orthogonal Transformations Theorem Let’s say u u u satisfies the Laplace equation . And let’s define v ( x ) v(x) v ( x ) as follows.
v ( x ) : = u ( R x )
v(x) :=u(Rx)
v ( x ) := u ( R x )
Then, R R R is a rotation transformation . Therefore, v ( x ) v(x) v ( x ) also satisfies the Laplace equation.
Δ v = 0
\Delta v=0
Δ v = 0
Explanation In fact, the content above holds for all orthogonal transformations . Thus, the fact that the Laplace equation is invariant under rotation transformation is a specific case of the fact that the Laplace equation is invariant under orthogonal transformations.
Proof Assuming that u u u satisfies the Laplace equation, let’s say O O O is an arbitrary orthogonal transformation. Then, the following equation is the objective of the proof.
v ( x ) = u ( O x ) ⟹ Δ v = 0
v(x)=u(Ox)\ \implies \Delta v=0
v ( x ) = u ( O x ) ⟹ Δ v = 0
Let’s specifically assume that O O O is as follows.
O = [ o i j ] = ( o 11 o 12 ⋯ o 1 n o 21 o 22 ⋯ o 2 n ⋮ ⋮ ⋱ ⋮ o n 1 o n 2 ⋯ o n n )
O=[o_{ij}]=\begin{pmatrix}
o_{11} & o_{12} & \cdots &o_{1n}
\\ o_{21} & o_{22} & \cdots & o_{2n}
\\ \vdots & \vdots & \ddots & \vdots
\\ o_{n1} & o_{n2} & \cdots & o_{nn}
\end{pmatrix}
O = [ o ij ] = o 11 o 21 ⋮ o n 1 o 12 o 22 ⋮ o n 2 ⋯ ⋯ ⋱ ⋯ o 1 n o 2 n ⋮ o nn
Then, the following holds.
O x = ( o 11 o 12 ⋯ o 1 n o 21 o 22 ⋯ o 2 n ⋮ ⋮ ⋱ ⋮ o n 1 o n 2 ⋯ o n n ) ( x 1 x 2 ⋮ x n ) = ( o 11 x 1 + o 12 x 2 + ⋯ + o 1 n x n o 21 x 1 + o 22 x 2 + ⋯ + o 2 n x n ⋮ o n 1 x 1 + o n 2 x 2 + ⋯ + o n n x n )
Ox=\begin{pmatrix}
o_{11} & o_{12} & \cdots &o_{1n}
\\ o_{21} & o_{22} & \cdots & o_{2n}
\\ \vdots & \vdots & \ddots & \vdots
\\ o_{n1} & o_{n2} & \cdots & o_{nn}
\end{pmatrix}
\begin{pmatrix}
x_{1}
\\ x_{2}
\\ \vdots
\\ x_{n}
\end{pmatrix}
=\begin{pmatrix}
o_{11}x_{1} + o_{12}x_{2} + \cdots +o_{1n}x_{n}
\\ o_{21}x_{1}+ o_{22}x_{2}+ \cdots + o_{2n}x_{n}
\\ \vdots
\\ o_{n1}x_{1}+ o_{n2}x_{2}+ \cdots +o_{nn}x_{n}
\end{pmatrix}
O x = o 11 o 21 ⋮ o n 1 o 12 o 22 ⋮ o n 2 ⋯ ⋯ ⋱ ⋯ o 1 n o 2 n ⋮ o nn x 1 x 2 ⋮ x n = o 11 x 1 + o 12 x 2 + ⋯ + o 1 n x n o 21 x 1 + o 22 x 2 + ⋯ + o 2 n x n ⋮ o n 1 x 1 + o n 2 x 2 + ⋯ + o nn x n
If we set O x = y Ox=y O x = y as follows, then we get the following.
O x = ( o 11 x 1 + o 12 x 2 + ⋯ + o 1 n x n o 21 x 1 + o 22 x 2 + ⋯ + o 2 n x n ⋮ o n 1 x 1 + o n 2 x 2 + ⋯ + o n n x n ) = ( y 1 y 2 ⋮ y n ) = y
Ox=\begin{pmatrix}
o_{11}x_{1} + o_{12}x_{2} + \cdots +o_{1n}x_{n}
\\ o_{21}x_{1}+ o_{22}x_{2}+ \cdots + o_{2n}x_{n}
\\ \vdots
\\ o_{n1}x_{1}+ o_{n2}x_{2}+ \cdots +o_{nn}x_{n}
\end{pmatrix}
=\begin{pmatrix}
y_{1}
\\ y_{2}
\\ \vdots
\\ y_{n}
\end{pmatrix}=y
O x = o 11 x 1 + o 12 x 2 + ⋯ + o 1 n x n o 21 x 1 + o 22 x 2 + ⋯ + o 2 n x n ⋮ o n 1 x 1 + o n 2 x 2 + ⋯ + o nn x n = y 1 y 2 ⋮ y n = y
This is the same as the following equation.
v ( x ) = u ( y )
v(x)=u(y)
v ( x ) = u ( y )
If we calculate the total derivative of v v v , we get the following.
d v = ∂ u ∂ y 1 d y 1 + ∂ u ∂ y 2 d y 2 + ⋯ + ∂ u ∂ y n d y n = u y 1 d y 1 + u y 2 d y 2 + ⋯ + u y n d y n
\begin{align*}
dv &=\dfrac{\partial u}{\partial y_{1}}dy_{1}+\dfrac{\partial u}{\partial y_{2}}dy_{2}+\cdots + \dfrac{\partial u}{\partial y_{n}}dy_{n}
\\ &= u_{y_{1}}dy_{1} + u_{y_{2}}dy_{2} + \cdots +u_{y_{n}}dy_{n}
\end{align*}
d v = ∂ y 1 ∂ u d y 1 + ∂ y 2 ∂ u d y 2 + ⋯ + ∂ y n ∂ u d y n = u y 1 d y 1 + u y 2 d y 2 + ⋯ + u y n d y n
Therefore, ∂ v ∂ x i = v x i \dfrac{\partial v}{\partial x_{i}}=v_{x_{i}} ∂ x i ∂ v = v x i is as follows.
v x i = u y 1 o 1 i + u y 2 o 2 i + ⋯ + u y n o n i = ∑ j = 1 n u y j o j i
v_{x_{i}} = u_{y_{1}}o_{1i}+u_{y_{2}}o_{2i}+\cdots + u_{y_{n}}o_{ni}=\sum \limits_{j=1}^{n} u_{y_{j}}o_{ji}
v x i = u y 1 o 1 i + u y 2 o 2 i + ⋯ + u y n o ni = j = 1 ∑ n u y j o ji
In the same manner, we get the following.
v x i x i = ∑ k = 1 n ∑ j = 1 n u y j y k o j i o k i
v_{x_{i}x_{i}}=\sum \limits_{k=1}^{n} \sum \limits_{j=1}^{n} u_{y_{j}y_{k}}o_{ji}o_{ki}
v x i x i = k = 1 ∑ n j = 1 ∑ n u y j y k o ji o ki
At this time, since O O O is an orthogonal matrix, we have O O T = I OO^T=I O O T = I , and thus the following equation holds.
∑ i = 1 n o j i o k i = δ j k
\sum \limits_{i=1}^{n} o_{ji}o_{ki}=\delta_{jk}
i = 1 ∑ n o ji o ki = δ jk
Therefore, we obtain the following result.
Δ v = ∑ i = 1 n v x i x i = ∑ i = 1 n ∑ k = 1 n ∑ j = 1 n u y j y k o j i o k i = ∑ k = 1 n ∑ j = 1 n u y j y k δ j k = ∑ j = 1 n u y j y j = Δ u = 0
\begin{align*}
\Delta v=\sum_{i=1}^{n} v_{x_{i}x_{i}} &= \sum \limits_{i=1}^{n}\sum \limits_{k=1}^{n} \sum \limits_{j=1}^{n} u_{y_{j}y_{k}}o_{ji}o_{ki}
\\ &= \sum \limits_{k=1}^{n} \sum \limits_{j=1}^{n} u_{y_{j}y_{k}}\delta_{jk}
\\ &= \sum \limits_{j=1}^{n} u_{y_{j}y_{j}}
\\ &= \Delta u=0
\end{align*}
Δ v = i = 1 ∑ n v x i x i = i = 1 ∑ n k = 1 ∑ n j = 1 ∑ n u y j y k o ji o ki = k = 1 ∑ n j = 1 ∑ n u y j y k δ jk = j = 1 ∑ n u y j y j = Δ u = 0
■