logo

Initial Value Problem and Inhomogeneous Problem Solutions for the Transport Equation 📂Partial Differential Equations

Initial Value Problem and Inhomogeneous Problem Solutions for the Transport Equation

Equation

Below partial differential equation is known as the transport equation.

ut+bDu=0in Rn×(0, ) u_{t} + b \cdot Du=0\quad \text{in }\mathbb{R}^n \times (0,\ \infty)

Solution1

Initial Value Problem

Let’s suppose the initial value problem of the transport equation is given as follows.

{ut+bDu=0in Rn×[0, )u=gon Rn×{t=0} \begin{equation} \left\{ \begin{aligned} u_{t}+b \cdot Du &= 0 && \text{in } \mathbb{R}^n \times [0,\ \infty) \\ u &= g && \text{on } \mathbb{R}^n\times \left\{ t=0 \right\} \end{aligned} \right. \label{IVP} \end{equation}

bRnb \in \mathbb{R}^n is a constant given in the transport equation, and g:RnRg:\mathbb{R}^n \rightarrow \mathbb{R} is given as the initial value. The problem is to obtain uu. Let’s define zz as follows.

z(s):=u(x+sb, t+s)(sR) z(s):=u(x+sb,\ t+s)\quad (s \in \mathbb{R})

Then, we obtain the following.

z(t)=u(xtb, 0)=g(xtb) z(-t)=u(x-tb,\ 0)=g(x-tb)

Also, since the value of z(s)z(s) is independent of ss, the following holds.

z(t)=z(0)=u(x, t) z(-t)=z(0)=u(x,\ t)

Therefore, the solution is as follows.

u(x, t)=g(xtb)  (xRn, t0) u(x,\ t)=g(x-tb) \ \ (x\in \mathbb{R}^n,\ t \ge 0)

Conversely, if there is gC1(Rn)g \in C^1(\mathbb{R}^n) satisfying u(x, t)=g(xtb)u(x,\ t)=g(x-tb), then uC1u \in C^1 becomes a solution of (1)(1).

Nonhomogeneous Problem

It is the case where the term on the right-hand side is not 00 in the initial value problem.

{ut+bDu=fin Rn×[0, )u=gonRn×{t=0} \begin{equation} \left\{ \begin{aligned} u_{t}+b \cdot Du &= f && \text{in }\mathbb{R}^n \times [0,\ \infty) \\ u &= g && \mathrm{on }\mathbb{R}^n\times \left\{ t=0 \right\} \end{aligned} \right. \label{NHIVP} \end{equation}

Regarding zz defined above, if we find z˙\dot{z}, it is as follows.

z˙(s)=dzds=uxdxds+utdtds=Du(x+sb, t+s)b+ut(x+sb, t+s)=f(x+sb, t+s) \begin{align*} \dot{z}(s) &= \dfrac{dz}{ds} \\ &= \dfrac{\partial u}{\partial x}\dfrac{d x}{d s} + \dfrac{\partial u}{\partial t}\dfrac{d t}{d s} \\ &= Du(x+sb,\ t+s)\cdot b +u_{t}(x+sb,\ t+s) \\ &= f(x+sb,\ t+s) \end{align*}

Therefore, the following holds.

u(x, t)g(xtb)=z(0)z(t)=t0z˙(s)ds=t0f(x+sb, t+s)ds=0tf(x+(st)b, s)ds \begin{align*} u(x,\ t)-g(x-tb)&=z(0)-z(-t) \\ &= \int_{-t}^0 \dot{z}(s) ds \\ &= \int_{-t}^0 f(x+sb,\ t+s)ds \\ &= \int_{0}^t f(x+(s-t)b,\ s)ds \end{align*}

The fourth equality holds by substituting ss+ts \equiv s^{\prime}+t. Then, the solution of (2)(2) is as follows.

u(x, t)=g(xtb)+0tf(x+(st)b, s)ds(xRn, t0) u(x,\ t)=g(x-tb)+\int_{0}^t f(x+(s-t)b,\ s)ds\quad (x\in\mathbb{R}^n,\ t \ge 0)


  1. Lawrence C. Evans, Partial Differential Equations (2nd Edition, 2010), p18-19 ↩︎