The Limit of Fourier Coefficients is Zero
📂Fourier AnalysisThe Limit of Fourier Coefficients is Zero
Theorem
The Fourier Coefficients an,bn and Complex Fourier Coefficients c±n are the limit n→∞
n→∞limann→∞limbnn→∞limc±n=0=0=0
Proof
By the Bessel’s Inequality, we know that the sum of the Fourier coefficients converges.
41∣a0∣2+21n=1∑∞(∣an∣2+∣bn∣2)=−∞∑∞∣cn∣2≤2L1∫−LL∣f(t)∣2dt
Therefore, ∣an∣2, ∣bn∣2, ∣c±n∣2 is the nth term of a converging series. If a series converges, the limit of the sequence is 0.
n→∞lim∣an∣2=0
n→∞lim∣bn∣2=0
n→∞lim∣c±n∣2=0
Therefore,
n→∞liman=0
n→∞limbn=0
n→∞limc±n=0
■