logo

Banach Fixed-Point Theorem Proof 📂Banach Space

Banach Fixed-Point Theorem Proof

Definition

  • Let (X,)(X, \left\| \cdot \right\|) be a Banach space. A T:XXT : X \to X that satisfies T(x)T(x~)rxx~\| T(x) - T ( \tilde{x} ) \| \le r \| x - \tilde{x} \| for all x,x~Xx, \tilde{x} \in X and 0r<10 \le r < 1 is defined as a contraction mapping.

  • A αX\alpha \in X that satisfies T(α)=αT ( \alpha ) = \alpha is called a fixed point.

Theorem 1

The fixed point of TT exists uniquely.

Explanation

The Banach fixed-point theorem is also called the contraction mapping theorem, and it can be usefully applied in the solution of partial differential equations assuming a Hilbert space, mainly in numerical analysis dealing with methods on Rn\mathbb{R}^{n}.

In fact, the norm itself is not necessary for the proof, so XX can be generalized to a complete metric space instead of a Banach space. If the distance of (X,d)(X , d) in a metric space is defined as d(x,y):=xyd (x,y) := \| x - y \|, the exact same proof works.

Proof

  • Part 1. Continuity of TT

    If we assume δ:=ε2\displaystyle \delta := {{\varepsilon} \over {2}},

    xx~<δ=ε2r \| x - \tilde{x} \| < \delta = {{ \varepsilon } \over { 2 r }}

        T(x)T(x~)rxx~=ε2<ε \implies \| T(x) - T ( \tilde{x} ) \| \le r \| x - \tilde{x} \| = {{\varepsilon } \over {2}} < \varepsilon

    Therefore, TT is a continuous function in XX.

  • Part 2. Existence of α\alpha

    Define a sequence {xn}nN\left\{ x_{n} \right\}_{n \in \mathbb{N}} as xn+1:=T(xn)x_{n+1} := T ( x_{n} ). Then,

    xnxn1=T(xn1)T(xn2)=rxn1xn2 \| x_{n} - x_{n-1} \| = \| T(x_{n-1} )- T(x_{n-2}) \| = r \| x_{n-1} - x_{n-2} \|

    Expanding recursively,

    xnxn1=rxn1xn2=r2xn2xn3=rn1x1x0 \begin{align*} \| x_{n} - x_{n-1} \| =& r \| x_{n-1} - x_{n-2} \| \\ =& r^2 \| x_{n-2} - x_{n-3} \| \\ \vdots& \\ =& r^{n-1} \| x_{1} - x_{0} \| \end{align*}

    Now, if we let n=m+kn = m + k for n,m,kNn, m, k \in \mathbb{N}, by the triangle inequality,

    xnxm=xm+kxmxm+kxm+(k1)++xm+kxm+(k1)xm+1xm(1+r++rk)xm+1xm1rk1rxm+1xm11rrm11rx1x0 \begin{align*} \| x_{n} - x_{m} \| =& \| x_{m+k} - x_{m} \| \\ \le & \| x_{m+k} - x_{m+(k-1) } \| + \cdots + \| x_{m+k} - x_{m+(k-1) } \| \\ \le & \| x_{m+1} - x_{m } \| \left( 1 + r + \cdots + r^{k} \right) \\ \le & \| x_{m+1} - x_{m } \| {{1 - r^{k}} \over {1 - r}} \\ \le & \| x_{m+1} - x_{m } \| {{1 } \over {1 - r}} \\ \le & {{ r^{m-1} } \over {1 - r}} \| x_{1} - x_{0} \| \end{align*}

    Therefore, {xn}nN\left\{ x_{n} \right\}_{n \in \mathbb{N}} is a Cauchy sequence. Since XX is a Banach space, when nn \to \infty then xnx_{n} converges to some αX\alpha \in X. From Part 1., since TT is continuous,

    T(α)=T(limnxn)=limnT(xn)=limnxn+1=α \begin{align*} T ( \alpha ) =& T \left( \lim_{n \to \infty } x_{n} \right) = \lim_{n \to \infty } T(x_{n} ) \\ =& \lim_{n \to \infty } x_{n+1} \\ =& \alpha \end{align*}

    Hence, α\alpha is a fixed point of TT.

  • Part 3. Uniqueness of α\alpha

    Let βX\beta \in X also be a fixed point of TT.

    αβT(α)T(β)rαβ \| \alpha - \beta \| \le \| T( \alpha ) - T ( \beta ) \| \le r \| \alpha - \beta \|

        (1r)αβ0 \implies (1 - r ) \| \alpha - \beta \| \le 0

        αβ0 \implies \| \alpha - \beta \| \le 0

        α=β \implies \alpha = \beta

    Therefore, the fixed point αX\alpha \in X of TT is unique.

Or it can also be said that since a Banach space is a metric space, it is a Hausdorff space, and in a Hausdorff space, a sequence converges uniquely.


  1. Kreyszig. (1989). Introductory Functional Analysis with Applications: p300~302. ↩︎