logo

Proof of the Conjugate Isomorphism Theorem 📂Abstract Algebra

Proof of the Conjugate Isomorphism Theorem

Definition 1

Let’s say α\alpha is algebraic over the field FF.

  1. A reduced polynomial for α\alpha over FF, whose highest coefficient is 11 and satisfies p(α)=0p( \alpha ) = 0, is represented as irr(α,F)=p(x)\text{irr} ( \alpha , F) = p(x).
  2. The highest degree of irr(α,F)\text{irr} ( \alpha , F) is called the degree of α\alpha over FF, and is represented as deg(α,F)\deg ( \alpha , F ).
  3. For the algebraic extension field EE of FF, if we say irr(α,F)=irr(β,F)\text{irr} ( \alpha , F) = \text{irr} ( \beta , F), then two elements α,βE\alpha , \beta \in E are called conjugates over FF.

Example

As a natural example, consider the conjugate complex number a+ib=aib\overline{ a + ib } = a - ib. For the reduced polynomial p(x):=(x22ax+a2+b2)R[x] p(x) := (x^2 - 2ax + a^2 + b^2) \in \mathbb{R}[x] , defining it as p(a+ib)=a2+i2abb22a2i2ab+a2+b2=0=a2i2abb22a2+i2ab+a2+b2=p(aib) \begin{align*} & p\left( a + ib \right) \\ =& a^2 + i2ab - b^2 - 2a^2 - i2ab + a^2 + b^2 \\ =& 0 \\ =& a^2 - i2ab - b^2 - 2 a^2 + i2ab + a^2 + b^2 \\ =& p \left( a - ib \right) \end{align*} , using the expression of algebra, we can see that (a+ib),(aib)C\left( a + ib \right) , \left( a - ib \right) \in \mathbb{C} is a conjugate over R\mathbb{R}.

For a more intuitive understanding of conjugates, consider the error equation x5+x3+x2+1=0 x^5 + x^3 + x^2 + 1 = 0 .

Factoring it into irreducibles R[x]\mathbb{R} [ x ], x5+x3+x2+1=(x3+1)(x2+1)=(x+1)(x2+x+1)(x2+1) x^5 + x^3 + x^2 + 1 = (x^3+1)(x^2+1) = (x+1) ( x^2 + x + 1 ) ( x^2+ 1 ) , therefore, solutions x=1x=-1, x=±1x= \pm 1, and x=1±32\displaystyle x= {{-1 \pm \sqrt{ - 3} } \over {2}} can be found. Although all of these satisfy the given equation, x=1x=-1 is a solution to a linear equation and, therefore, cannot be a conjugate of the other solutions. Moreover, x=ix=i and x=1+32\displaystyle x= {{-1 + \sqrt{ - 3} } \over {2}} are not conjugates since they are zeros of a different reduced polynomial.

As an example of conjugates without complex numbers, 2\sqrt{2} and (2)(- \sqrt{2}), which are zeros of (x22)Q[x](x^2 - 2 ) \in \mathbb{Q} [ x ], are conjugates over Q\mathbb{Q}.

Theorem

Let’s say deg(α,F)=n\deg ( \alpha , F) = n for algebraic α\alpha over the field FF. By defining the mapping ψα,β:F(α)F(β)\psi_{\alpha , \beta} : F( \alpha ) \to F ( \beta ) as ψα,β(c0+c1α++cn1αn1):=c0+c1β++cn1βn1 \psi_{ \alpha , \beta } ( c_{0} + c_{1} \alpha + \cdots + c_{n-1} \alpha^{n-1} ) := c_{0} + c_{1} \beta + \cdots + c_{n-1} \beta^{n-1} ,

  • ψα,β\psi_{ \alpha , \beta } is a homomorphism     \iff irr(α,F)=irr(β,F)\text{irr} ( \alpha , F) = \text{irr} ( \beta , F)

Proof

Assuming (    )( \implies ),

irr(α,F):=a0+a1x++anxn \text{irr} ( \alpha , F) := a_{0} + a_{1} x + \cdots + a_{n} x^{n} , then a0+a1α++anαn=0 a_{0} + a_{1} \alpha + \cdots + a_{n} \alpha^{n} = 0 . Since ψα,β\psi_{ \alpha , \beta } is a homomorphism, ψα,β(0)=ψα,β(c0+c1α++cnαn)=c0+c1β++cnβn=0 \begin{align*} \psi_{ \alpha , \beta } ( 0) =& \psi_{ \alpha , \beta } ( c_{0} + c_{1} \alpha + \cdots + c_{n} \alpha^{n} ) \\ =& c_{0} + c_{1} \beta + \cdots + c_{n} \beta^{n} \\ =& 0 \end{align*} . This means that irr(β,F)\text{irr} ( \beta , F) divides irr(α,F)\text{irr} ( \alpha , F), and the same applies to (ψα,β)1=ψβ,α( \psi_{ \alpha , \beta } )^{-1} = \psi_{ \beta , \alpha }, therefore the following holds: irr(β,F)=irr(α,F) \text{irr} ( \beta , F) = \text{irr} ( \alpha , F) .


(    )( \impliedby )

Let p(x):=irr(β,F)=irr(α,F) p(x) := \text{irr} ( \beta , F) = \text{irr} ( \alpha , F) and define the substitution functions ϕα:F[x]F(α)\phi_{\alpha} : F [ x ] \to F(\alpha) and ϕβ:F[x]F(β)\phi_{\beta} : F [ x ] \to F(\beta). Then, because of p(α)=p(β)=0p( \alpha ) = p( \beta ) = 0, ϕα\phi_{\alpha}, and ϕβ\phi_{\beta} have the same kernel <p(x)>F[x]\left< p(x) \right> \subset F [ x ].

Fundamental Theorem of Homomorphism: For rings RR, rr ', if there exists a homomorphism ϕ:Rr\phi : R \to r ', then R/ker(ϕ)ϕ(R)R / \ker ( \phi ) \simeq \phi (R).

By the Fundamental Theorem of Homomorphism, two homomorphisms ψα:F/<p(x)>F(α)\psi_{\alpha} : F / \left< p(x) \right> \to F ( \alpha ) and ψβ:F/<p(x)>F(β)\psi_{\beta} : F / \left< p(x) \right> \to F (\beta ) exist. By setting ψα,β:=ψα(ψα)1 \psi_{\alpha , \beta } := \psi_{\alpha} \circ ( \psi_{\alpha} )^{-1} , ψα,β:F(α)F(β)\psi_{\alpha , \beta } : F ( \alpha ) \to F ( \beta ) is also a homomorphism. Therefore, the following holds for (c0+c1α++cn1αn1)F(α)( c_{0} + c_{1} \alpha + \cdots + c_{n-1} \alpha^{n-1} ) \in F ( \alpha ): ψα,β(c0+c1α++cn1αn1)=(ψα(ψα)1)(c0+c1α++cn1αn1)=ψβ((c0+c1x++cn1xn1)+<p(x)>)=c0+c1β++cn1βn1 \begin{align*} & \psi_{ \alpha , \beta } ( c_{0} + c_{1} \alpha + \cdots + c_{n-1} \alpha^{n-1} ) \\ =& \left( \psi_{\alpha} \circ ( \psi_{\alpha} )^{-1} \right) ( c_{0} + c_{1} \alpha + \cdots + c_{n-1} \alpha^{n-1} ) \\ =& \psi_{\beta} \left( ( c_{0} + c_{1} x + \cdots + c_{n-1} x^{n-1} ) + \left< p(x) \right> \right) \\ =& c_{0} + c_{1} \beta + \cdots + c_{n-1} \beta^{n-1} \end{align*} .

Meanwhile, we can derive the following useful corollary for equations with real coefficients.

Corollary

For f(x)R[x]f(x) \in \mathbb{R} [ x ], if f(a+ib)=0f ( a + ib) = 0, then f(aib)=0f ( a - ib) = 0.

Proof of the corollary

Let’s say f(x):=c0+c1x++cnxnf(x) := c_{0} + c_{1} x + \cdots + c_{n} x^{n}.

Since f(a+ib)=0f ( a + ib) = 0, f(a+ib):=c0+c1(a+ib)++cn(a+ib)n=0 f( a + ib ) := c_{0} + c_{1} ( a + ib ) + \cdots + c_{n} ( a + ib )^{n} = 0 , ii, and i-i are conjugates over R\mathbb{R}, therefore, the following holds: 0=ψi,i(0)=ψi,i(f(a+ib))=f(aib) 0 = \psi_{i , -i} \left( 0 \right) = \psi_{i , -i} \left( f ( a + ib) \right)= f ( a - ib) .


  1. Fraleigh. (2003). A first course in abstract algebra(7th Edition): p416. ↩︎