Proof that All Norms Defined on a Finite Dimensional Vector Space are Equivalent
📂Banach Space Proof that All Norms Defined on a Finite Dimensional Vector Space are Equivalent Theorem All norms defined on a finite-dimensional vector space are equivalent.
Explanation The fact that all norms defined in Euclidean space are equivalent is a corollary of this theorem.
Proof Strategy: If we can show that there exists c , C > 0 c , C >0 c , C > 0 satisfying c ∥ v ∥ α ≤ ∥ v ∥ β ≤ C ∥ v ∥ α c \| v \| _{\alpha} \le \| v \| _{\beta} \le C \| v \| _{\alpha} c ∥ v ∥ α ≤ ∥ v ∥ β ≤ C ∥ v ∥ α , then the two norms ∥ ⋅ ∥ α \left\| \cdot \right\|_{\alpha} ∥ ⋅ ∥ α and ∥ ⋅ ∥ β \left\| \cdot \right\|_{\beta} ∥ ⋅ ∥ β are equivalent. The existence of the maximum and minimum values of ∥ v ∥ β ∥ v ∥ α \displaystyle { { \| v \| _{\beta} } \over {\| v \| _{\alpha} } } ∥ v ∥ α ∥ v ∥ β is shown at once through the extreme value theorem.
If a norm is defined in the finite-dimensional vector space X X X , then there exists a basis { e 1 , ⋯ , e n } \left\{ e_{1} , \cdots , e_{n} \right\} { e 1 , ⋯ , e n } . Hence, every vector in X X X can be represented as ( λ 1 , ⋯ , λ n ) = λ 1 e 1 + ⋯ + λ n e n (\lambda_{1} , \cdots , \lambda_{n} ) = \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} ( λ 1 , ⋯ , λ n ) = λ 1 e 1 + ⋯ + λ n e n . Consider the three norms defined in X X X , ∥ ⋅ ∥ 1 \left\| \cdot \right\|_{1} ∥ ⋅ ∥ 1 , ∥ ⋅ ∥ 2 \left\| \cdot \right\|_{2} ∥ ⋅ ∥ 2 , and ∥ ⋅ ∥ \left\| \cdot \right\| ∥ ⋅ ∥ . Especially ∥ ⋅ ∥ \left\| \cdot \right\| ∥ ⋅ ∥ ,
∥ λ 1 e 1 + ⋯ + λ n e n ∥ : = ∑ k = 1 n ∣ λ k ∣
\| \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \| : = \sum_{k=1}^{n} | \lambda_{k} |
∥ λ 1 e 1 + ⋯ + λ n e n ∥ := k = 1 ∑ n ∣ λ k ∣
is defined as the norm by summing up the absolute values of the coefficients of the linear combination. Now, if we show ∥ ⋅ ∥ 1 ∼ ∥ ⋅ ∥ \left\| \cdot \right\|_{1} \sim \left\| \cdot \right\| ∥ ⋅ ∥ 1 ∼ ∥ ⋅ ∥ and ∥ ⋅ ∥ ∼ ∥ ⋅ ∥ 2 \left\| \cdot \right\| \sim \left\| \cdot \right\|_{2} ∥ ⋅ ∥ ∼ ∥ ⋅ ∥ 2 , then by the transitivity of the equivalence relation , any two norms satisfy ∥ ⋅ ∥ 1 ∼ ∥ ⋅ ∥ 2 \left\| \cdot \right\|_{1} \sim \left\| \cdot \right\|_{2} ∥ ⋅ ∥ 1 ∼ ∥ ⋅ ∥ 2 .
Part 1.
Let’s define the function f : ( C n , ∥ ⋅ ∥ ) → R f : ( \mathbb{C}^{n} , \left\| \cdot \right\| ) \to \mathbb{R} f : ( C n , ∥ ⋅ ∥ ) → R as f ( λ 1 , ⋯ , λ n ) = ∥ λ 1 e 1 + ⋯ + λ n e n ∥ 1 f( \lambda_{1} , \cdots , \lambda_{n} ) = \| \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \|_{1} f ( λ 1 , ⋯ , λ n ) = ∥ λ 1 e 1 + ⋯ + λ n e n ∥ 1 . And define sequences { λ 1 ( j ) } j ∈ N , ⋯ , { λ n ( j ) } j ∈ N \left\{ \lambda_{1}^{(j)} \right\}_{j \in \mathbb{N} } , \cdots , \left\{ \lambda_{n}^{(j)} \right\}_{j \in \mathbb{N} } { λ 1 ( j ) } j ∈ N , ⋯ , { λ n ( j ) } j ∈ N such that each converges to λ 1 , ⋯ , λ n \lambda_{1} , \cdots , \lambda_{n} λ 1 , ⋯ , λ n .
∣ f ( λ 1 ( j ) , ⋯ , λ n ( j ) ) − f ( λ 1 , ⋯ , λ n ) ∣ = ∣ ∥ λ 1 ( j ) e 1 + ⋯ + λ n ( j ) e n ∥ 1 − ∥ λ 1 e 1 + ⋯ + λ n e n ∥ 1 ∣ ≤ ∥ ( λ 1 ( j ) e 1 + ⋯ + λ n ( j ) e n ) − ( λ 1 e 1 + ⋯ + λ n e n ) ∥ 1 ≤ ∑ k = 1 n ∥ ( λ k ( j ) e k − λ k e k ) ∥ 1 ≤ ∑ k = 1 n ∣ λ k ( j ) − λ k ∣ max 1 ≤ k ≤ n ∥ e k ∥ 1
\begin{align*}
& \left| f( \lambda_{1}^{(j)} , \cdots , \lambda_{n}^{(j)} ) - f( \lambda_{1} , \cdots , \lambda_{n} ) \right|
\\ =& \left| \| \lambda_{1}^{(j)} e_{1} + \cdots + \lambda_{n}^{(j)} e_{n} \|_{1} - \| \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \|_{1} \right|
\\ \le & \left\| \left( \lambda_{1}^{(j)} e_{1} + \cdots + \lambda_{n}^{(j)} e_{n} \right) - \left( \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \right) \right\|_{1}
\\ \le & \sum_{k=1}^{n} \left\| \left( \lambda_{k}^{(j)} e_{k} - \lambda_{k} e_{k} \right) \right\|_{1}
\\ \le & \sum_{k=1}^{n} \left| \lambda_{k}^{(j)}- \lambda_{k} \right| \max_{1 \le k \le n} \left\| e_{k} \right\|_{1}
\end{align*}
= ≤ ≤ ≤ f ( λ 1 ( j ) , ⋯ , λ n ( j ) ) − f ( λ 1 , ⋯ , λ n ) ∥ λ 1 ( j ) e 1 + ⋯ + λ n ( j ) e n ∥ 1 − ∥ λ 1 e 1 + ⋯ + λ n e n ∥ 1 ( λ 1 ( j ) e 1 + ⋯ + λ n ( j ) e n ) − ( λ 1 e 1 + ⋯ + λ n e n ) 1 k = 1 ∑ n ( λ k ( j ) e k − λ k e k ) 1 k = 1 ∑ n λ k ( j ) − λ k 1 ≤ k ≤ n max ∥ e k ∥ 1
That is, when j → ∞ j \to \infty j → ∞ , then ∣ f ( λ 1 ( j ) , ⋯ , λ n ( j ) ) − f ( λ 1 , ⋯ , λ n ) ∣ → 0 \left| f( \lambda_{1}^{(j)} , \cdots , \lambda_{n}^{(j)} ) - f( \lambda_{1} , \cdots , \lambda_{n} ) \right| \to 0 f ( λ 1 ( j ) , ⋯ , λ n ( j ) ) − f ( λ 1 , ⋯ , λ n ) → 0 and thus f f f is a continuous function.
Part 2.
The set of vectors in X X X whose sum of the absolute values of the coefficients is 1 1 1
S : = { λ 1 e 1 + ⋯ + λ n e n : ∑ k = 1 n ∣ λ k ∣ = 1 , λ k ∈ C }
S := \left\{ \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \ : \ \sum_{k=1}^{n} | \lambda_{k}|=1, \lambda_{k} \in \mathbb{C} \right\}
S := { λ 1 e 1 + ⋯ + λ n e n : k = 1 ∑ n ∣ λ k ∣ = 1 , λ k ∈ C }
is compact , and since f f f is continuous, by the extreme value theorem ,
f ( S ) = { ∥ λ 1 e 1 + ⋯ + λ n e n ∥ 1 : ∑ k = 1 n ∣ λ k ∣ = 1 , λ k ∈ C }
f(S) = \left\{ \| \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \|_{1} \ : \ \sum_{k=1}^{n} | \lambda_{k}|=1, \lambda_{k} \in \mathbb{C} \right\}
f ( S ) = { ∥ λ 1 e 1 + ⋯ + λ n e n ∥ 1 : k = 1 ∑ n ∣ λ k ∣ = 1 , λ k ∈ C }
has the minimum value m m m and the maximum value M M M . Therefore,
m ≤ ∥ λ 1 e 1 + ⋯ + λ n e n ∥ 1 ≤ M
m \le \| \lambda_{1} e_{1} + \cdots + \lambda_{n} e_{n} \|_{1} \le M
m ≤ ∥ λ 1 e 1 + ⋯ + λ n e n ∥ 1 ≤ M
Part 3.
For ( α 1 e 1 + ⋯ + α n e n ) ∈ X ( \alpha_{1} e_{1} + \cdots + \alpha_{n} e_{n} ) \in X ( α 1 e 1 + ⋯ + α n e n ) ∈ X where ∑ k = 1 n ∣ α k ∣ ≠ 1 \displaystyle \sum_{k=1}^{n} | \alpha_{k}| \ne 1 k = 1 ∑ n ∣ α k ∣ = 1 ,
m ≤ ∥ α 1 ∑ k = 1 n ∣ α k ∣ e 1 + ⋯ + α n ∑ k = 1 n ∣ α k ∣ e n ∥ 1 ≤ M
m \le \left\| {{\alpha_{1} } \over { \sum_{k=1}^{n} | \alpha_{k}|}} e_{1} + \cdots + {{\alpha_{n}} \over { \sum_{k=1}^{n} | \alpha_{k}|}} e_{n} \right\|_{1} \le M
m ≤ ∑ k = 1 n ∣ α k ∣ α 1 e 1 + ⋯ + ∑ k = 1 n ∣ α k ∣ α n e n 1 ≤ M
By the properties of norms,
m ≤ 1 ∑ k = 1 n ∣ α k ∣ ∥ α 1 e 1 + ⋯ + α n e n ∥ 1 ≤ M
m \le {{1} \over {\sum_{k=1}^{n} | \alpha_{k}|}} \| \alpha_{1} e_{1} + \cdots + \alpha_{n} e_{n} \|_{1} \le M
m ≤ ∑ k = 1 n ∣ α k ∣ 1 ∥ α 1 e 1 + ⋯ + α n e n ∥ 1 ≤ M
since ∑ k = 1 n ∣ α k ∣ = ∥ α 1 e 1 + ⋯ + α n e n ∥ \displaystyle \sum_{k=1}^{n} | \alpha_{k} | = \| \alpha_{1} e_{1} + \cdots + \alpha_{n} e_{n} \| k = 1 ∑ n ∣ α k ∣ = ∥ α 1 e 1 + ⋯ + α n e n ∥ ,
m ∥ α 1 e 1 + ⋯ + α n e n ∥ ≤ ∥ α 1 e 1 + ⋯ + α n e n ∥ 1 ≤ M ∥ α 1 e 1 + ⋯ + α n e n ∥
m \| \alpha_{1} e_{1} + \cdots + \alpha_{n} e_{n} \| \le \| \alpha_{1} e_{1} + \cdots + \alpha_{n} e_{n} \|_{1} \le M \| \alpha_{1} e_{1} + \cdots + \alpha_{n} e_{n} \|
m ∥ α 1 e 1 + ⋯ + α n e n ∥ ≤ ∥ α 1 e 1 + ⋯ + α n e n ∥ 1 ≤ M ∥ α 1 e 1 + ⋯ + α n e n ∥
Therefore, according to the definition of equivalence of norms ,
∥ ⋅ ∥ ∼ ∥ ⋅ ∥ 1
\left\| \cdot \right\| \sim \left\| \cdot \right\|_{1}
∥ ⋅ ∥ ∼ ∥ ⋅ ∥ 1
Part 4.
By showing ∥ ⋅ ∥ ∼ ∥ ⋅ ∥ 2 \left\| \cdot \right\| \sim \left\| \cdot \right\|_{2} ∥ ⋅ ∥ ∼ ∥ ⋅ ∥ 2 using a similar method, by the transitivity of the equivalence relation,
∥ ⋅ ∥ 1 ∼ ∥ ⋅ ∥ 2
\left\| \cdot \right\|_{1} \sim \left\| \cdot \right\|_{2}
∥ ⋅ ∥ 1 ∼ ∥ ⋅ ∥ 2
■