logo

Derivation of the Series Form of the Natural Logarithm and Proof of the Convergence of the Alternating Harmonic Series 📂Calculus

Derivation of the Series Form of the Natural Logarithm and Proof of the Convergence of the Alternating Harmonic Series

Theorem

ln(1x)=n=0xn+1n+1 \ln(1-x)=\sum _{ n=0 }^{ \infty }{ \frac { -{ x }^{ n+1 } }{ n+1 } }

Description

The series form of ln(1x)\ln(1-x) can be relatively easily obtained. For ln(1+x)\ln(1+x), it is enough to substitute x-x for xx as a result of the theorem.

ln(1x)=x+x22+x33+x44+ -\ln(1-x)=x+\frac { { x }^{ 2 } }{ 2 }+\frac { { x }^{ 3 } }{ 3 }+\frac { { x }^{ 4 } }{ 4 }+ \cdots

If (x)(-x) is substituted for xx, then

ln(1+x)=x+x22x33+x44 -\ln(1+x)=-x+\frac { { x }^{ 2 } }{ 2 }-\frac { { x }^{ 3 } }{ 3 }+\frac { { x }^{ 4 } }{ 4 }- \cdots

    ln(1+x)=xx22+x33x44+ \implies \ln(1+x)=x-\frac { { x }^{ 2 } }{ 2 }+\frac { { x }^{ 3 } }{ 3 }-\frac { { x }^{ 4 } }{ 4 }+ \cdots

Meanwhile, by substituting 11 for xx in ln(1+x)\ln(1+x), one can understand that an alternating harmonic series converges.

ln2=112+1314+ \ln 2 = 1- {1 \over 2} + { 1 \over 3} - { 1 \over 4 }+ \cdots

Of course, strictly speaking, since it is a series expansion obtained from 1<x<1-1 < x < 1, it is necessary to mention that ln(1+x)\ln (1+x) is continuous at x=1x=1, and then compute the left-hand limit as follows.

ln2=lnlimx1(1+x)=limx1ln(1+x)=limx1n=0(x)nn+1 \begin{align*} \ln 2 =& \ln \lim_{x \to 1} (1 + x) \\ =& \lim_{x \to 1} \ln (1 + x) \\ =& \lim_{x \to 1-} \sum_{n=0}^{\infty} {{(-x)^{n}} \over {n+1}} \end{align*} This fact is primarily used as an example to explain the concept of absolute convergence, where the alternating harmonic series converges as

n=1(1)n1n=112+1314+=ln2< \sum_{n=1}^{\infty} {{(-1)^{n-1}} \over {n}} = 1- {1 \over 2} + { 1 \over 3} - { 1 \over 4 }+ \cdots = \ln 2 < \infty

while the series of their absolute values, the harmonic series, diverges, so

n=1(1)n1n=n=11n= \sum_{n=1}^{\infty} \left| {{(-1)^{n-1}} \over {n}} \right| = \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ n } }=\infty

is satisfied. Therefore, it becomes the simplest example to explain that ‘convergence does not necessarily mean absolute convergence.’

Proof

For 1<x<1-1<x<1, the sum of the geometric series n=0xn\sum_{n=0}^{\infty} x^{n} is as follows.

11x=1+x+x2+x3+ {{ 1 } \over { 1-x }}=1+x+{ x }^{ 2 }+{ x }^{ 3 }+ \cdots

Taking integration on both sides gives

ln(1x)=c+x+x22+x33+x44+ -\ln(1-x)=c+x+\frac { { x }^{ 2 } }{ 2 }+\frac { { x }^{ 3 } }{ 3 }+\frac { { x }^{ 4 } }{ 4 }+ \cdots

Since when x=0x=0, ln(10)=0=c+0-\ln(1-0)=0=c+0, we get $c=0

ln(1x)=n=0xn+1n+1 \therefore \ln(1-x)=\sum _{ n=0 }^{ \infty }{ \frac { -{ x }^{ n+1 } }{ n+1 } }

See Also