Homogeneous Functions and First-Order Differential Equations
Definition
When a function $f(x,y)$ satisfies $f(tx,ty)=t^nf(x,y)$ for any positive integer $n$, $f$ is called a $n$th degree homogeneous function.
When a function $f(x,y)$ satisfies $f(tx,ty)=t^nf(x,y)$ for any positive integer $n$, $f$ is called a $n$th degree homogeneous function.
🍂Autumn Special Omakase🍂
「Dual Numbers and Automatic Differentiation」